Skip to main content
Log in

Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier–Stokes equations. The dynamic global coefficient version of the Vreman’s subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle’s integral of Lighthill’s acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the \(-5/3\) power law. It is shown that Vreman’s SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Howe, M.: Theory of vortex sound. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Marsden, A., Wang, M., Dennis, J., et al.: Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 572, 13–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang, Q., Wang, M.: Computational study of roughness-induced boundary-layer noise. AIAA J. 47, 2417–2429 (2009)

    Article  Google Scholar 

  4. Spalarta, P., Shurb, M., Streletsb, M., et al.: Towards noise prediction for rudimentary landing gear. Proc. Eng. 6, 283–292 (2010)

    Article  Google Scholar 

  5. Boudet, J., Casalino, D., Jacob, M. C.: Prediction of sound radiated by a rod using large eddy simulation. AIAA Paper 2003–3217 (2003)

  6. Seo, J.H., Chang, K.W., Moon, Y.J.: Aerodynamic noise prediction for long-span bodies. AIAA Paper 2006–2573 (2006)

  7. Orselli, R.M., Meneghini, J.R., Saltara, F.: Two and three-dimensional simulation of sound generated by flow around a circular cylinder. AIAA Paper 2009–3270 (2009)

  8. Li, D., Guo, L., Zhang, X., et al.: A numerical study of a turbulent mixing layer and its generated noise. Sci. China Phys. Mech. Astron. 56, 1157–1164 (2013)

    Article  Google Scholar 

  9. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  Google Scholar 

  10. Murayama, M., Yokokawa, Y., Kato, H.: Computational and experimental study on noise generation from tire-axle regions of a two-wheel main landing gear. AIAA Paper 2011–2821 (2011)

  11. Ham, F., You, D., Moin, P.: Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil. Phys. Fluids 20, 101515 (2008)

    Article  Google Scholar 

  12. Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  13. Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16, 3670 (2004)

  14. You, D., Moin, P.: A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Phys. Fluids 19, 169–182 (2007)

    Google Scholar 

  15. Perot, J.B.: An analysis of the fractional step method. J. Comput. Phys. 108, 51–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 215–240 (2004)

    Article  MATH  Google Scholar 

  17. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henson, V., Yang, U.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. A 211, 564–587 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. A 231, 505–510 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at \(ReD=3900\). J. Comput. Phys. 197, 215–240 (2004)

    Article  Google Scholar 

  22. Beaudan, P., Moin, P.: Numerical experiments on the flow past a circular cylinders at sub-critical Reynolds numbers. Report No. TF-62, Department of Mechanical Engineering, Stanford University, Stanford (1994)

  23. Lourenco, L., Shih, C., Krothapalli, A.: Observations on the near wake of a yawed circular cylinder. Laser anemometry in fluid mechanics V. Springer-Verlog, Berlin (1993)

    Google Scholar 

  24. Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441–453 (1996)

    Article  Google Scholar 

  25. Cardell, G.S.: Flow past a circular cylinder with a permeable wake splitter plate. [Ph.D. Thesis]. California Institute of Technology, Pasadena (1993)

  26. Tang, K.F.: Numerical simulation of flow-induced noise by means of the hybrid method with LES and aeroacoustic analogy. [Ph.D. thesis]. University of Siegen, Siegen (2004)

Download references

Acknowledgments

The authors would like to sincerely thank Prof. D You at Pohang University of Science and Technology for his discussion and advice for the present work. This work was supported by the National Natural Science Foundation of China (Grant 11232011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhang, X. & He, G. Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation. Acta Mech. Sin. 32, 1–11 (2016). https://doi.org/10.1007/s10409-015-0528-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0528-0

Keywords

Navigation