Skip to main content
Log in

Modeling rock specimens through 3D printing: Tentative experiments and prospects

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Charles, H.: Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330 (1986)

  2. Sachs, E.M., Haggerty, J.H., Cima, M.J., et al.: Three-dimensional printing techniques, US Patent 5,204,055. (1989)

  3. Wohlers, T., Gornet, T.: History of additive manufacturing. Online Supplement to wohlers report 2011. http://www.wohlersassociates.com/history2011, Accessed 22.3.2012. (2012)

  4. Yoo, S.S.: 3D On-Demand Bioprinting for the Creation of Engineered Tissues. In: Ringeisen, B.R., et al. (eds.) Cell and Organ Printing, pp. 3–17. Springer Science Business Media B.V, New York (2010)

    Chapter  Google Scholar 

  5. Bose, S., Vahabzadeh, S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16, 496–504 (2013)

    Article  Google Scholar 

  6. Huang, T.Q., Qu, X., Liu, J., et al.: 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices 16, 127–132 (2014)

    Article  Google Scholar 

  7. Espalin, D., Muse, D.W., MacDonald, E., et al.: 3D Printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72, 963–978 (2014)

    Article  Google Scholar 

  8. Hoerber, J., Glasschroeder, J., Pfeffer, M., et al.: Approaches for additive manufacturing of 3D electronic applications. Procedia CIRP 17, 806–811 (2014)

    Article  Google Scholar 

  9. Lyke, J.C.: Plug-and-play satellites. IEEE Spectr. 49, 36–42 (2012)

    Article  Google Scholar 

  10. Moon, S.K., Tan, Y.E., Hwang, J., et al.: Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int. J. Precis. Eng. Man. Gr. Technol. 1, 223–228 (2014)

    Article  Google Scholar 

  11. Henry, S.: 3D Printing for mathematical visualisation. In: Michael, K., Ravi, V. (eds.) Mathematical Entertainments, pp. 56–62. University of California, Berkeley (2012)

    Google Scholar 

  12. Schwarzbach, F., Sarjakoski, T., Oksanen, J., et al.: Physical 3D models from LIDAR data as tactile maps for visually impaired persons. In: Buchroithner, M. (ed.) True-3D in Cartography: Auto Stereoscopic and Solid Visualisation of Geodata, Lecture Notes in Geoinformation and Cartography. Springer, Berlin (2012)

    Google Scholar 

  13. Eisenberg, M.: 3D printing for children: What to build next? Int. J. Child Comput. Interact. 1, 7–13 (2013)

    Article  Google Scholar 

  14. Bilton, N.: The 3-D Printing Free-for-All. (2011)

  15. Priest, S.D., Brown, E.T.: Probabilistic stability analysis of variable rock slopes. Trans. Inst. Min. Metall. A. 92, 1–12 (1983)

    Google Scholar 

  16. Hoek, E.: Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. Int. J. Rock Mech. Min. Sci. 35, 63–68 (1998)

    Article  Google Scholar 

  17. Cai, M.: Rock Mass Characterization and rock property variability considerations for tunnel and cavern design. Rock Mech. Rock Eng. 44, 379–399 (2011)

    Article  Google Scholar 

  18. Manouchehrian, A., Marji, M.F.: Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression. Acta Mech. Sin. 30, 547–558 (2014)

    Article  Google Scholar 

  19. Yang, S.Q., Jing, H.W., Xu, T.: Mechanical behavior and failure analysis of brittle sandstone specimens containing combined flaws under uniaxial compression. J. Cent. South Univ. 21, 2059–2073 (2014)

    Article  Google Scholar 

  20. Niewiadomski, R., Anderson, D.: 3-D manufacturing: The beginning of common creativity revolution. In: Lee, N. (ed.) Digital Da Vinci. Springer Science Business Media, New York (2014)

    Google Scholar 

  21. McMains, S.: Layered manufacturing technologies. Commun. ACM 48, 50–55 (2005)

    Article  Google Scholar 

  22. Herrmann, K.H., Gartner, C., Gullmar, D., et al.: 3D printing of MRI compatible components: Why every MRI research group should have a low-budget 3D printer. Med. Eng. Phys. 36, 1373–1380 (2014)

    Article  Google Scholar 

  23. Bell, C.: The possibility maintaining and troubleshooting your 3D printer. Technology in action, Friends of Apress (2014)

  24. Jee, H.J., Sachs, E.: A visual simulation technique for 3D printing. Adv. Eng. Softw. 31, 97–106 (2000)

    Article  Google Scholar 

  25. Junk, S., Samann-Sun, J., Niederhofer, M.: Application of 3D printing for the rapid tooling of thermoforming moulds. In: Lin, L. (ed)., Proceedings of the 36th International MATADOR Conference, SrichandHinduja, pp, 369–372 (2010)

  26. Serrat, J., Lumbreras, F., Lopez, A.M.: Cost estimation of custom hoses from STL files and CAD drawings. Comput. Ind. 64, 299–309 (2013)

    Article  Google Scholar 

  27. Wikipedia: STL (file format). http://en.wikipedia.org/wiki/STL_(file_format)#cite_ref-1. Accessed 22.3.2012 (2015)

  28. ISRM.: Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 16, 135–140 (1979)

  29. Fairhurst, C.E., Hudson, J.A.: Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int. J. Rock. Mech. Min. Sci. 36, 279–289 (1999)

    Article  Google Scholar 

  30. Brady, B.H.G., Brown, E.T.: Rock Mechanics for Underground Mining, 3rd edn. Springer Science Inc., Boston (2004)

    Google Scholar 

  31. Cai, M.: Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle Rocks. Rock Mech. Rock Eng. 43, 167–184 (2010)

    Article  Google Scholar 

  32. Jiang, Q., Feng, X.T., Hatzor, Y.H., et al.: Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station. China. Eng. Geol. 175, 35–45 (2014)

    Article  Google Scholar 

  33. Bobet, A., Einstein, H.H.: Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock. Mech. Min. Sci. 35, 863–888 (1998)

    Article  Google Scholar 

  34. Wong, R.H.C., Chau, K.T.: Crack coalescence in a rock-like material containing two cracks. Int. J. Rock Mech. Min. Sci. 35, 147–164 (1998)

    Article  Google Scholar 

  35. Zhang, Z.H., Sun, F.: The three-dimension model for the rock-breaking mechanism of disc cutter and analysis of rock-breaking forces. Acta Mech. Sin. 28, 675–682 (2012)

    Article  MathSciNet  Google Scholar 

  36. Wasantha, P.L.P., Ranjith, P.G., Xu, T., et al.: A new parameter to describe the persistency of non-persistent joints. Eng. Geol. 181, 71–77 (2014)

    Article  Google Scholar 

  37. Wong, R.H.C., Chau, K.T., Tang, C.A.: Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach. Int. J. Rock. Mech. Min. Sci. 38, 909–924 (2001)

    Article  Google Scholar 

  38. Zhang, X.P., Wong, L.N.Y., Wang, S.J.: Effects of the ratio of flaw size to specimen size on cracking behavior. B. Eng. Geol. Environ. 74, 181–193 (2015)

    Article  Google Scholar 

  39. Haberfield, C.M., Seidel, J.P.: Some recent advances in the modelling of soft rock joints in direct shear. Geotech. Geol. Eng. 17, 177–195 (1999)

    Article  Google Scholar 

  40. Ghazvinian, A.H., Taghichian, A., Hashemi, M., et al.: The Shear behavior of bedding planes of weakness between two different rock types with high strength difference. Rock Mech. Rock Eng. 43, 69–87 (2010)

  41. Usefzadeh, A., Yousefzadeh, H., Hossein, S.R.: Empirical and mathematical formulation of the shear behavior of rock joints. Eng. Geol. 164, 243–252 (2013)

    Article  Google Scholar 

  42. Yang, S.Q., Huang, Y.H.: Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mech. Sin. 30, 547–558 (2014)

    Article  Google Scholar 

  43. Barton, N., Choubey, V.: The shear strength of rock joints in theory and practice. Rock Mech. 10, 1–54 (1997)

    Article  Google Scholar 

  44. Sterpi, D., Cividini, A.: A Physical and numerical investigation on the stability of shallow tunnels in strain softening media. Rock Mech. Rock Eng. 37, 277–298 (2004)

    Article  Google Scholar 

  45. Li, Y.J., Zhang, D.L., Fang, Q., et al.: A physical and numerical investigation of the failure mechanism of weak rocks surrounding tunnels. Comput. Geotech. 61, 292–307 (2014)

    Article  Google Scholar 

  46. Xu, X.N., Chen, Y.L., Li, S.W.: Study of shock landslide-Type geomechanical model test for consequent rock slope. In: Margottini, C. (ed.) Landslide Science and Practice, pp. 11–16. Springer, Berlin (2014)

  47. Chen, G.Q., Huang, R.Q., Xu, Q., et al.: Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method. J. Mt. Sci. 10, 532–540 (2013)

    Article  Google Scholar 

  48. Fumagalli, E.: Statically and Geomechanical Models. (Translated by P.N. Jang)., China Water Resources and Electric Power Press, Beijing (1979)

  49. Meguid, M.A., Saada, O., Nunes, M.A., et al.: Physical modeling of tunnels in soft ground: a review. Tunn. Under Sp. Tech. 23, 185–198 (2008)

    Article  Google Scholar 

  50. Chen, G.Q., Li, T.B., Zhang, G.F., et al.: Temperature effect of rock burst for hard rock in deep-buried tunnel. Nat. Hazards 72, 915–926 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grants 41172284 and 51379202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Feng, X., Song, L. et al. Modeling rock specimens through 3D printing: Tentative experiments and prospects. Acta Mech. Sin. 32, 101–111 (2016). https://doi.org/10.1007/s10409-015-0524-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0524-4

Keywords

Navigation