Advertisement

Acta Mechanica Sinica

, Volume 32, Issue 1, pp 83–100 | Cite as

A review on the application of modified continuum models in modeling and simulation of nanostructures

  • K. F. WangEmail author
  • B. L. Wang
  • T. Kitamura
Review Paper

Abstract

Analysis of the mechanical behavior of nanostructures has been very challenging. Surface energy and nonlocal elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams, graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are mentioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomaterials are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires further applications of modified continuum models in modeling nanomaterials and nanostructures.

Graphic abstract

Keywords

Surface elasticity Nonlocal continuum Nanotubes  Nanobeams Nanoplates Modeling and simulations 

Notes

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grant 11372086) and the Natural Science Foundation of Guangdong Province of China (Grant 2014A030313696).

References

  1. 1.
    Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chiu, H.Y., Hung, P., Postma, HWCh., et al.: Atom-ic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8, 4342–4346 (2008)CrossRefGoogle Scholar
  3. 3.
    Falvo, M.R., Clary, G.J., Taylor, R.M., et al.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997)CrossRefGoogle Scholar
  4. 4.
    Iijima, S., Brabec, C., Maiti, A., et al.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)CrossRefGoogle Scholar
  5. 5.
    Hernandez, E., Goze, C., Bernier, P., et al.: Elastic properties of C and Bx Cy Nz composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)CrossRefGoogle Scholar
  6. 6.
    Sanchez-Portal, D., Artacho, E., Soler, J.M., et al.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 12678–12688 (1999)CrossRefGoogle Scholar
  7. 7.
    Yakobson, B.I., Campbell, M.P., Brabec, C.J., et al.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)CrossRefGoogle Scholar
  8. 8.
    Bodily, B.H., Sun, C.T.: Structural and equivalent continuum properties of single-walled carbon nanotubes. Int. J. Mater. Prod. Technol. 18, 381–397 (2003)CrossRefGoogle Scholar
  9. 9.
    Li, C., Chou, T.W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)CrossRefGoogle Scholar
  10. 10.
    Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)CrossRefGoogle Scholar
  11. 11.
    Krishnan, A., Dujardin, E., Ebbesen, T.W., et al.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)Google Scholar
  12. 12.
    Wang, X., Yang, H.K., Dong, K.: Torsional buckling of multi-walled carbon nanotubes. Mater. Sci. Eng. A 404, 314–322 (2005)Google Scholar
  13. 13.
    Duan, W.H., Wang, Q., Wang, Q., et al.: Modeling the instability of carbon nanotubes: from continuum mechanics to molecular dynamics. J. Nanotechnol. Eng. Med. 1, 011001 (2010)CrossRefGoogle Scholar
  14. 14.
    Kitipornchai, S., He, X.Q., Liew, K.M.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72, 075443 (2005)CrossRefGoogle Scholar
  15. 15.
    He, X.Q., Kitipornchai, S., Liew, K.M.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16, 2086–2091 (2005)CrossRefGoogle Scholar
  16. 16.
    Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain gradient elasticity constants. J. Mech. Phys. Solids 55, 1832–1852 (2005)Google Scholar
  17. 17.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal 57, 291–323 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)zbMATHCrossRefGoogle Scholar
  19. 19.
    Truesdell, C., Noll, W.: The Nonlinear Field Theories of Mechanics. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  20. 20.
    Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  22. 22.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)zbMATHGoogle Scholar
  23. 23.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)CrossRefGoogle Scholar
  24. 24.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535 (2003)CrossRefGoogle Scholar
  25. 25.
    Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)CrossRefGoogle Scholar
  26. 26.
    Jing, G.Y., Duan, H.L., Sun, X.M., et al.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)CrossRefGoogle Scholar
  27. 27.
    Tabib-Azar, M., Nassirou, M., Wang, R., et al.: Mechanical properties of self-welded silicon nanobridges. Appl. Phys. Lett. 87, 113102 (2005)CrossRefGoogle Scholar
  28. 28.
    Song, J.H., Wang, X.D., Riedo, E., et al.: Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005)CrossRefGoogle Scholar
  29. 29.
    Cuenot, S., Fretigny, C., Demoustier-Champagne, S., et al.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)CrossRefGoogle Scholar
  30. 30.
    He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)CrossRefGoogle Scholar
  31. 31.
    Jiang, L.Y., Yan, Z.: Timoshenko beam model for static bending of nanowires with surface effects. Physica E 42, 2274–2279 (2010)Google Scholar
  32. 32.
    Wang, G.F.: Effects of surface energy on the mechanical performance of nanosized beams. J. Comput. Theor. Nanosci. 8, 1–5 (2011)CrossRefGoogle Scholar
  33. 33.
    Liu, C., Rajapakse, R.K.N.D., Phani, A.S.: Finite element modeling of beams with surface energy effects. J. Appl. Mech. 78, 031014 (2011)CrossRefGoogle Scholar
  34. 34.
    Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244–1255 (2011)Google Scholar
  35. 35.
    Wang, K.F., Wang, B.L.: Effects of surface and interface energies on the bending behavior of nanoscale multilayered beams. Physica E 54, 197–201 (2013)CrossRefGoogle Scholar
  36. 36.
    Lu, P., He, L.H., Lee, H.P., et al.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)zbMATHCrossRefGoogle Scholar
  37. 37.
    Wang, Z., Zhao, Y.: Self-instability and bending behaviors of nano plates, Acta Mech. Solida Sin. 22, 630–643 (2009)CrossRefGoogle Scholar
  38. 38.
    Ansari, R., Shahabodini, A., FaghihShojaei, M., et al.: On the bending and buckling behaviors of Mindlin nanoplates considering surface energies. Physica E 57, 126–137 (2014)CrossRefGoogle Scholar
  39. 39.
    Wang, G.F., Yang, F.: Postbuckling analysis of nanowires with surface effects. J. Appl. Phys. 109, 063535 (2011)CrossRefGoogle Scholar
  40. 40.
    Liu, J.L., Mei, Y., Xia, R., et al.: Large displacement of a static bending nanowire with surface effects. Physica E 44, 2050–2055 (2012)CrossRefGoogle Scholar
  41. 41.
    Sapsathiarn, Y., Rajapakse, R.K.N.D.: A model for large deflections of nanobeams and experimental comparison. IEEE T. Nanotechnol. 11, 247–254 (2012)CrossRefGoogle Scholar
  42. 42.
    Young, S.J., Ji, L.H., Chang, S.J., et al.: Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO:Ga/glass templates. Nanotechnology 18, 225603 (2007)CrossRefGoogle Scholar
  43. 43.
    Ji, L.W., Young, S.J., Fang, T.H., et al.: Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 033109 (2007)CrossRefGoogle Scholar
  44. 44.
    Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009)Google Scholar
  45. 45.
    Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D 42, 155411 (2009)CrossRefGoogle Scholar
  46. 46.
    Assadi, A., Farshi, B.: Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Physica E 43, 1111–1117 (2011)CrossRefGoogle Scholar
  47. 47.
    Li, B., Li, C.X., Wei, C.L.: Surface effects on the postbuckling of nanowires. Chin. Phys. Lett. 28, 046202 (2011)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Li, Y.H., Song, J.Z., Fang, B., et al.: Surface effects on the postbuckling of nanowires. J. Phys. D 44, 425304 (2011)CrossRefGoogle Scholar
  49. 49.
    Ansari, R., Mohammadi, V., Faghih Shojaei, M., et al.: Postbuckling characteristics of nanobeams based on the surface elasticity theory. Compos. Part B 55, 240–246 (2013)CrossRefGoogle Scholar
  50. 50.
    Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)zbMATHCrossRefGoogle Scholar
  51. 51.
    Wang, K.F., Wang, B.L.: Effect of surface energy on the non-linear postbuckling behavior of nanoplates. Int. J. Non-Linear Mech. 55, 19–24 (2013)CrossRefGoogle Scholar
  52. 52.
    Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology 21, 505708 (2010)CrossRefGoogle Scholar
  53. 53.
    Koochi, A., Kazemi, A., Khandani, F., et al.: Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Phys. Scripta 85, 035804 (2012)zbMATHCrossRefGoogle Scholar
  54. 54.
    Yang, F., Wang, G.F., Long, J.M., et al.: Influence of surface energy on the pull-in instability of electrostatic nano-switches. J. Comput. Theor. Nanosci. 10, 1273–1277 (2013)CrossRefGoogle Scholar
  55. 55.
    Fu, Y.M., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeamsincorporating surface energies. Appl. Math. Model. 35, 941–951 (2011)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Wang, K.F., Wang, B.L.: Influence of surface energy on the non-linear pull-in instability of nano-switches. Int. J. Non-Linear Mech. 59, 69–75 (2014)CrossRefGoogle Scholar
  57. 57.
    Wang, K.F., Wang, B.L.: A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature. Physica E 66, 197–208 (2015)CrossRefGoogle Scholar
  58. 58.
    Lu, C.F., Wu, D.Z., Chen, W.Q.: Surface effects on the jump-in instability of nanomechanical structures. IEEE Trans. Nanotechnol. 10, 962–967 (2010)CrossRefGoogle Scholar
  59. 59.
    Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)CrossRefGoogle Scholar
  60. 60.
    He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93, 263108 (2008)CrossRefGoogle Scholar
  61. 61.
    He, J., Lilley, C.M.: Resonant frequency analysis of Timoshenko nanowires with surface stress for different boundary conditions. J. Appl. Phys. 112, 074322 (2012)CrossRefGoogle Scholar
  62. 62.
    Farshi, B., Assadi, A., Alinia-ziazi, A.: Frequency analysis of nanotubes with consideration of surface effects. Appl. Phys. Lett. 96, 093105 (2010)CrossRefGoogle Scholar
  63. 63.
    Wang, K.F., Wang, B.L.: Effect of surface energy on the sensing performance of bridged nanotubebased micro-mass sensors. J. Intel. Mater. Syst. Struct. 25, 2177–2186 (2014)CrossRefGoogle Scholar
  64. 64.
    Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y., et al.: Free transverse vibrations of cracked nanobeams with surface effects. Thin Solid Films 519, 2477–2482 (2011)CrossRefGoogle Scholar
  65. 65.
    Wang, K.F., Wang, B.L.: Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. J. Vib. Control. doi: 10.1177/1077546313513054 (2013)
  66. 66.
    Assadi, A., Farshi, B., Alinia-ziazi, A.: Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107, 124310 (2010)CrossRefGoogle Scholar
  67. 67.
    Assadi, A., Farshi, B.: Vibration characteristics of circular nanoplates. J. Appl. Phys. 108, 074312 (2010)CrossRefGoogle Scholar
  68. 68.
    Ansari, R., Gholami, R., FaghihShojaei, M., et al.: Surface stress effect on the vibrational response of circular nanoplates with various edge supports. J. Appl. Mech. 80, 021021 (2013)CrossRefGoogle Scholar
  69. 69.
    Ansari, R., Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204–1215 (2011)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. Part B 42, 934–937 (2011)CrossRefGoogle Scholar
  71. 71.
    Sharabiani, P.A., Yazdi, M.R.H.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B 45, 581–586 (2013)CrossRefGoogle Scholar
  72. 72.
    Wang, K.F., Wang, B.L.: Effects of residual surface stress and surface elasticity on the nonlinear free vibration of nanoscale plates. J. Appl. Phys. 112, 013520 (2012)CrossRefGoogle Scholar
  73. 73.
    Lu, C.F., Wu, D.Z., Chen, W.Q.: Nonlinear responses of nanoscale FGM films including the effects of surface energies. IEEE Trans. Nanotechnol 10, 1321–1327 (2010)Google Scholar
  74. 74.
    Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behavior of a piezoelectric ring. Phys. Status Solid B 243, R22–R24 (2006)CrossRefGoogle Scholar
  75. 75.
    Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D 44, 075404 (2011)CrossRefGoogle Scholar
  76. 76.
    Xu, X.J., Deng, Z.C., Wang, B.: Closed solutions for the electromechanical bending and vibration of thick piezoelectric nanobeams with surface effects. J. Phys. D 46, 405302 (2013)Google Scholar
  77. 77.
    Yan, Z., Jiang, L.Y.: Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J. Phys. D 45, 255401 (2012)CrossRefGoogle Scholar
  78. 78.
    Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL 91, 56007 (2010)CrossRefGoogle Scholar
  79. 79.
    Samaei, A.T., Bakhtiari, M., Wang, G.F.: Timoshenko beam model for buckling of Piezoelectric nanowires with surface effects. Nanoscale Res. Let. 7, 201–206 (2012)CrossRefGoogle Scholar
  80. 80.
    Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)CrossRefGoogle Scholar
  81. 81.
    Wang, K.F., Wang, B.L.: Surface effects on the buckling of piezoelectric nanobeams. Adv. Mater. Res. 486, 519–523 (2012)CrossRefGoogle Scholar
  82. 82.
    Li, Y.H., Chen, C., Fang, B., et al.: Postbuckling of piezoelectric nanobeams with surface effects. Int. J. Appl. Mech. 04, 1250018 (2012)CrossRefGoogle Scholar
  83. 83.
    Zhang, J., Wang, C.Y., Adhikari, S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D 45, 285301 (2012)CrossRefGoogle Scholar
  84. 84.
    Yan, Z., Jiang, L.Y.: Surface effects on the vibration and buckling of piezoelectric nanoplates. EPL 99, 27007 (2012)CrossRefGoogle Scholar
  85. 85.
    Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A 468, 3458–3475 (2012)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Samaei, A.T., Gheshlaghi, B., Wang, G.F.: Frequency analysis of piezoelectric nanowires with surface effects. Curr. Appl. Phys. 13, 2098–2102 (2013)CrossRefGoogle Scholar
  87. 87.
    Zhang, C.L., Chen, W.Q.: Two-dimensional theory of piezoelectric plate considering surface effect. Eur. J. Mech. A Solids 41, 50–57 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Ibach, H.: Adsorbate-induced surface stress. J. Vac. Sci. Technol. A 12, 2240–2245 (1994)CrossRefGoogle Scholar
  89. 89.
    Seoánez, C., Guines, F.: Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes. Phys. Rev. B 77, 125107 (2008)CrossRefGoogle Scholar
  90. 90.
    Zener, C.: Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago (1948)zbMATHGoogle Scholar
  91. 91.
    Ru, C.Q.: Size effect of dissipative surface stress on quality factor of microbeams Appl. Phys. Lett. 94, 051905 (2009)Google Scholar
  92. 92.
    Hasheminejad, S.M., Gheshlaghi, B.: Dissipative surface stress effects on free vibrations of nanowires. Appl. Phys. Lett. 97, 253103 (2010)CrossRefGoogle Scholar
  93. 93.
    Gheshlaghi, B., Hasheminejad, S.M.: Size dependent surface dissipation in thick nanowires. Appl. Phys. Lett. 100, 263112 (2012)Google Scholar
  94. 94.
    Gheshlaghi, B.: Large-amplitude vibrations of nanowires with dissipative surface stress effects. Acta Mech. 224, 1329–1334 (2013)Google Scholar
  95. 95.
    Hasheminejad, S.M., Gheshlaghi, B.: Eigenfrequencies and quality factors of nanofilm resonators with dissipative surface stress effects. Wave. Motion. 50, 94–100 (2013)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Gheshlaghi, B., Hasheminejad, S.M.: Size dependent damping in axisymmetric vibrations of circular nanoplates. Thin Solid Films 537, 212–216 (2013)CrossRefGoogle Scholar
  97. 97.
    Wei, G., Yu, S.W., Huang, G.Y.: Finite Element characterization of the size-dependent mechanical behavior in nanosystems. Nanotechnology 17, 1118–1122 (2006)CrossRefGoogle Scholar
  98. 98.
    Tian, L., Rajapakse, R.K.N.D.: Finite element modeling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41, 44–53 (2007)CrossRefGoogle Scholar
  99. 99.
    Feng, Y.K., Liu, Y.L., Wang, B.: Finite element analysis of resonant properties of silicon nanowires with consideration of surface effects. Acta Mech. 217, 149–155 (2011)zbMATHCrossRefGoogle Scholar
  100. 100.
    Wang, K.F., Wang, B.L.: A finite element model for the bending and vibration of nanoscale plates with surface effect. Finite Elem. Anal. Des. 74, 22–29 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRefGoogle Scholar
  102. 102.
    Li, C., Yao, L.Q., Chen, W.Q., et al.: Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 87, 47–57 (2015)CrossRefGoogle Scholar
  103. 103.
    Wang, C.M., Kitipornchai, S., Lim, C.W., et al.: Beam bending solutions based on nonlocal Timoshenko beam theory. J. Eng. Mech. 134, 475–481 (2008)CrossRefGoogle Scholar
  104. 104.
    Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)CrossRefGoogle Scholar
  105. 105.
    Aydogdu, M.: A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E 41, 651–1655 (2009)Google Scholar
  106. 106.
    Duan, W.H., Wang, C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)CrossRefGoogle Scholar
  107. 107.
    Wang, Y.Z., Li, F.M.: Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects. Mech. Res. Commun. 41, 44–48 (2012)CrossRefGoogle Scholar
  108. 108.
    Yang, Q., Lim, C.W., Xiang, Y.: Nonlinear thermal bending for shear deformable nanobeams based on nonlocal elasticity theory. Int. J. Aerosp. Lightweight Struct. 1, 89–107 (2011)CrossRefGoogle Scholar
  109. 109.
    Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)CrossRefGoogle Scholar
  111. 111.
    Wang, Q., Varadan, V.K., Quek, S.T.: Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357, 130–135 (2006)CrossRefGoogle Scholar
  112. 112.
    Zhang, Y.Q., Liu, G.R., Wang, J.S.: Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys. Rev. B 70, 205430 (2004)CrossRefGoogle Scholar
  113. 113.
    Yang, Y., Lim, C.W.: A variational principle approach for buckling of carbon nanotube on nonlocal Timoshenko beam models. Nano 06, 363 (2011)CrossRefGoogle Scholar
  114. 114.
    Senthilkumar, V., Pradhan, S.C., Prathap, G.: Buckling analysis of carbon nanotube based on nonlocal Timoshenko beam theory using differential transform method. Adv. Sci. Lett. 3, 415–421 (2010)CrossRefGoogle Scholar
  115. 115.
    Wang, C.M., Zhang, Y.Y., Ramesh, S.S., et al.: Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D 39, 3904–3909 (2006)CrossRefGoogle Scholar
  116. 116.
    Lim, C.W., Niu, J.C., Yu, Y.M.: Nonlocal stress theory for buckling instability of nanotubes: new predictions on stiffness strengthening effects of nanoscales. J. Comput. Theor. Nanosci. 7, 2104–2111 (2010)CrossRefGoogle Scholar
  117. 117.
    Xie, G.Q., Han, X., Liu, G.R., et al.: Effect of small size-scale on the radial buckling pressure of a simply supported multi-walled carbon nanotube. Smart Mater. Struct. 15, 1143–1149 (2006)CrossRefGoogle Scholar
  118. 118.
    Wang, Y.Z., Li, F.M., Kishimoto, K.: Scale effects on thermal buckling properties of carbon nanotube. Phys. Lett. A 374, 4890–4893 (2010)zbMATHCrossRefGoogle Scholar
  119. 119.
    Li, R., Kardomateas, G.A.: Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. J. Appl. Mech. 74, 399–405 (2007)zbMATHCrossRefGoogle Scholar
  120. 120.
    Ansari, R., Shahabodini, A., Rouhi, H., et al.: Thermal buckling analysis of multi-walled carbon nanotubes through a nonlocal shell theory incorporating interatomic potentials. J. Therm. Stresses 36, 56–70 (2013)CrossRefGoogle Scholar
  121. 121.
    Ansari, R., Gholami, R., Darabi, M.A.: Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Therm. Stresses 34, 1271–1281 (2011)CrossRefGoogle Scholar
  122. 122.
    Arani, A.G., Zarei, M.S., Mohammadimehr, M., et al.: The thermal effect on buckling analysis of a DWCNT embedded on the Pasternak foundation. Physica E 43, 1642–1648 (2011)CrossRefGoogle Scholar
  123. 123.
    Pradhan, S.C., Murmu, T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47, 268–274 (2009)CrossRefGoogle Scholar
  124. 124.
    Pradhan, S.C., Murmu, T.: Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Physica E 42, 1293–1301 (2010)CrossRefGoogle Scholar
  125. 125.
    Malekzadeh, P., Setoodeh, A.R., Alibeygi Beni, A.: Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium. Comput. Struct. 93, 2083–2089 (2011)CrossRefGoogle Scholar
  126. 126.
    Farajpour, A., Mohammadi, M., Shahidi, A.R., et al.: Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Physica E 43, 1820–1825 (2011)CrossRefGoogle Scholar
  127. 127.
    Farajpour, A., Shahidi, A.R., Mohammadi, M., et al.: Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Comput. Struct. 94, 1605–1614 (2012)CrossRefGoogle Scholar
  128. 128.
    Samaeia, A.T., Abbasion, S., Mirsayar, M.M.: Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mech. Res. Commun. 38, 481–485 (2011)zbMATHCrossRefGoogle Scholar
  129. 129.
    Wang, C.M., Xiang, Y., Kitipornchai, S.: Postbuckling of nano-rods/tubes based on nonlocal beam theory. Int. J. Appl. Mech. 1, 259–266 (2009)CrossRefGoogle Scholar
  130. 130.
    Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P.: Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Physica E 43, 1730–1737 (2011)CrossRefGoogle Scholar
  131. 131.
    Emam, S.A.: A general nonlocal nonlinear model for buckling of nanobeams. Appl. Math. Model. 37, 6929–6939 (2013)MathSciNetCrossRefGoogle Scholar
  132. 132.
    Yang, Q., Lim, C.W.: Thermal effects on buckling of shear deformable nanocolumns with von Kármán nonlinearity based on nonlocal stress theory. Nonlinear Anal. Real 13, 905–922 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Shen, H.S.: Nonlocal plate model for nonlinear analysis of thin films on elastic foundations in thermal environments. Comput. Struct. 93, 1143–1152 (2011)CrossRefGoogle Scholar
  134. 134.
    Farajpour, A., Arab Solghar, A.: Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Physica E 47, 197–206 (2013)CrossRefGoogle Scholar
  135. 135.
    Yang, J., Jia, X.L., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D 41, 035103 (2008)CrossRefGoogle Scholar
  136. 136.
    Peng, J., Luo, G., Yang, L., et al.: Pull-in instability behaviour of nanoscale actuators using nonlocal elasticity theory. Adv. Mater. Res. 468, 2755–2758 (2012)CrossRefGoogle Scholar
  137. 137.
    Taghavi, N., Nahvi, H.: Pull-in instability of cantilever and fixed-fixed nano-switches. Eur. J Mech. A-Solids 41, 123–133 (2013)MathSciNetCrossRefGoogle Scholar
  138. 138.
    Mousavi, T., Bornassi, S., Haddadpour, H.: The effect of small scale on the pull-in instability of nano-switches using DQM. Int. J. Solids Struct. 50, 1193–1202 (2013)CrossRefGoogle Scholar
  139. 139.
    Arani, A.G., Ghaffari, M., Jalilvand, A., et al.: Nonlinear nonlocal pull-in instability of boron nitride nanoswitches. Acta Mech. 224, 3005–3019 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Zhang, Y.Q., Liu, G.R., Xie, X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)CrossRefGoogle Scholar
  141. 141.
    Lu, P., Lee, H.P., Lu, C.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)CrossRefGoogle Scholar
  142. 142.
    Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart. Mater. Struct. 15, 659–666 (2006)CrossRefGoogle Scholar
  143. 143.
    Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)CrossRefGoogle Scholar
  144. 144.
    Murmu, T., Pradhan, S.C.: Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Physica E 41, 1451–1456 (2009)CrossRefGoogle Scholar
  145. 145.
    Murmu, T., Pradhan, S.C.: Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46, 854–859 (2009)CrossRefGoogle Scholar
  146. 146.
    Ke, L.L., Xiang, Y., Yang, J., et al.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47, 409–417 (2009)CrossRefGoogle Scholar
  147. 147.
    Murmu, T., Adhikari, S.: Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech. Res. Commun. 38, 62–67 (2011)zbMATHCrossRefGoogle Scholar
  148. 148.
    Murmu, T., Adhikari, S., Wang, C.Y.: Torsional vibration of carbon nanotube-buckyball systems based on nonlocal elasticity theory. Physica E 43, 1276–1280 (2011)CrossRefGoogle Scholar
  149. 149.
    Simsek, M.: Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 50, 2112–2123 (2011)CrossRefGoogle Scholar
  150. 150.
    Aydogdu, M., Filiz, S.: Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 43, 1229–1234 (2011)CrossRefGoogle Scholar
  151. 151.
    Lee, H.L., Chang, W.J.: Frequency analysis of carbon-nanotube-based mass sensor using non-local Timoshenko beam theory. Micro Nano Lett. 7, 86–89 (2012)CrossRefGoogle Scholar
  152. 152.
    Wang, K.F., Wang, B.L.: Vibration modeling of carbon nanotube based biosensors incorporating thermal and nonlocal effects. J. Vib. Control. (2014). doi: 10.1177/1077546314534718
  153. 153.
    Adhikari, S., Chowdhury, R.: Zeptogram sensing from gigahertz vibration: Graphene based nanosensor. Physica E 44, 1528–1534 (2012)CrossRefGoogle Scholar
  154. 154.
    Lu, P., Zhang, P.Q., Lee, H.P., et al.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)zbMATHCrossRefGoogle Scholar
  156. 156.
    Wang, Y.Z., Li, F.M., Kishimoto, K.: Wave propagation characteristics in fluid-conveying double-walled nanotubes with scale effects. Comput. Mater. Sci. 48, 413–418 (2010)CrossRefGoogle Scholar
  157. 157.
    Pradhan, S.C., Kumar, A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011)CrossRefGoogle Scholar
  158. 158.
    Murmu, T., Pradhan, S.C.: Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105, 064319 (2009)CrossRefGoogle Scholar
  159. 159.
    Ansari, R., Rajabiehfard, R., Arash, B.: Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput. Mater. Sci. 49, 831–838 (2010)CrossRefGoogle Scholar
  160. 160.
    Yang, X.D., Lim, C.W.: Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method. Sci. China Ser. E 52, 617–621 (2009)zbMATHCrossRefGoogle Scholar
  161. 161.
    Yang, J., Ke, L.L., Kitipornchai, S.: Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E 42, 1727–1735 (2010)CrossRefGoogle Scholar
  162. 162.
    Fang, B., Zhen, Y.X., Zhang, C.P., et al.: Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Appl. Math. Model. 37, 1096–1107 (2013)MathSciNetCrossRefGoogle Scholar
  163. 163.
    Ansari, R., Ramezannezhad, H.: Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Physica E 43, 1171–1178 (2011)CrossRefGoogle Scholar
  164. 164.
    Shen, L., Shen, H.S., Zhang, C.L.: Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput. Mater. Sci. 48, 680–685 (2010)CrossRefGoogle Scholar
  165. 165.
    Shen, H.S., Xu, Y.M., Zhang, C.L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Methods Appl. Mech. Eng. 267, 458–470 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Jomehzadeh, E., Saidi, A.R.: A study on large amplitude vibration of multilayered graphene sheets. Comput. Mater. Sci. 50, 1043–1051 (2011)CrossRefGoogle Scholar
  167. 167.
    Zhou, Z.G., Du, S.Y., Wu, L.Z.: Investigation of anti-plane shear behavior of a Griffith permeable crack in functionally graded piezoelectric materials by use of the non-local theory. Compos. Struct. 78, 575–83 (2007)CrossRefGoogle Scholar
  168. 168.
    Zhou, Z.G., Wang, B.: The scattering of harmonic elastic anti-plane shear waves by a Griffith crack in a piezoelectric material plane by using the non-local theory. Int. J. Eng. Sci. 40, 303–317 (2002)CrossRefGoogle Scholar
  169. 169.
    Wang, K.F., Wang, B.L.: The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects. EPL 97, 66005 (2012)CrossRefGoogle Scholar
  170. 170.
    Arani, A.G., Amir, S., Shajari, A.R.: Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos. Part B 43, 195–203 (2012)CrossRefGoogle Scholar
  171. 171.
    Liu, C., Ke, L.L., Wang, Y.S.: Buckling and postbuckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings. Int. J. Struct. Stab. Dy. 14, 1350067. (2014). doi: 10.1142/S0219455413500673 MathSciNetCrossRefGoogle Scholar
  172. 172.
    Ke, L.L., Wang, Y.S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21, 025018 (2012)CrossRefGoogle Scholar
  173. 173.
    Ke, L.L., Wang, Y.S., Wang, Z.D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Comput. Struct. 94, 2038–2047 (2012)CrossRefGoogle Scholar
  174. 174.
    Arani, A.G., Amir, S., Shajari, A.R., et al.: Electro-thermal non-local vibration analysis of embedded DWBNNTs. P. I. Mech. Eng. C-J. Mec. 2269, 1410–1422 (2012)CrossRefGoogle Scholar
  175. 175.
    Liu, C., Ke, L.L., Wang, Y.S., et al.: Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Comp. Struct. 106, 167–174 (2013)CrossRefGoogle Scholar
  176. 176.
    Alaimo, A., Bruno, M., Milazzo, A., et al.: Nonlocal model for a magneto-electro-elastic nanoplate. AIP Conf. Proc. 1558, 1208–1211 (2013)CrossRefGoogle Scholar
  177. 177.
    Phadikar, J.K., Pradhan, S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–499 (2010)CrossRefGoogle Scholar
  178. 178.
    Alshorbagy, A.E., Eltaher, M.A., Mahmoud, F.F.: Static analysis of nanobeams using nonlocal FEM. J. Mech. Sci. Technol. 27, 2035–2041 (2013)CrossRefGoogle Scholar
  179. 179.
    Adhikari, S., Murmu, T., McCarthy, M.A.: Dynamic finite element analysis of axially vibrating nonlocal rods. Finite Elem. Anal. Des. 63, 42–50 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Pradhan, S.C.: Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory. Finite Elem. Anal. Des. 50, 8–20 (2012)CrossRefGoogle Scholar
  181. 181.
    Shenoy, V.B.: Nanomechanics. In: Lakhtakia, A. (ed.) Handbook of nanotechnology: Nanometer structure theory, modeling, and simulation. SPIE Press, Washington, USA (2004). Chap. 7Google Scholar
  182. 182.
    Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E., et al.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555–3563 (2012)CrossRefGoogle Scholar
  183. 183.
    Juntarasaid, C., Pulngern, T., Chucheepsakul, S.: Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Physica E 46, 68–76 (2012)Google Scholar
  184. 184.
    Lee, H.L., Chang, W.J.: Surface and small-scale effects on vibration analysis of a nonuniform nanocantilever beam. Physica E 43, 466–469 (2010)CrossRefGoogle Scholar
  185. 185.
    Lee, H.L., Chang, W.J.: Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys. 108, 093503 (2010)CrossRefGoogle Scholar
  186. 186.
    Lei, X.W., Natsuki, T., Shi, J.X., et al.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B: Eng. 43, 64–69 (2011). 9CrossRefGoogle Scholar
  187. 187.
    Elishakoff, I., Soret, C.: Nonlocal refined theory for nanobeams with surface effects. Bull. Georgian Natl. Acad. Sci. 6, 59–67 (2012)MathSciNetzbMATHGoogle Scholar
  188. 188.
    Eltaher, M.A., Mahmoud, F.F., Assie, A.E., et al.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760–774 (2013)MathSciNetCrossRefGoogle Scholar
  189. 189.
    Xu, X.J., Deng, Z.C.: Surface effects of adsorption-induced resonance analysis on micro/nanobeams via nonlocal elasticity. Appl. Math. Mech. 34, 37–44 (2013)MathSciNetCrossRefGoogle Scholar
  190. 190.
    Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E 44, 448–453 (2011)Google Scholar
  191. 191.
    Wang, K.F., Wang, B.L.: Combining effects of surface energy and non-local elasticity on the buckling of Nanoplates. Micro Nano Lett. 6, 941–943 (2011)CrossRefGoogle Scholar
  192. 192.
    Gheshlaghi, B., Hasheminejad, S.M.: Vibration analysis of piezoelectric nanowires with surface and small scale effects. Curr. Appl. Phys. 12, 1096–1099 (2012)CrossRefGoogle Scholar
  193. 193.
    Hosseini-Hashemi, S., Nahas, I., Fakher, M., et al.: Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225, 1555–1564 (2014)Google Scholar
  194. 194.
    Arani, A.G., Roudbari, M.A.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542, 232–241 (2013)CrossRefGoogle Scholar
  195. 195.
    Sumigawa, T., Hirakata, H., Takemura, M., et al.: Disappearance of stress singularity at interface edge due to nanostructured thin film. Eng. Fract. Mech. 75, 3073–3083 (2008)CrossRefGoogle Scholar
  196. 196.
    Kitamura, T., Hirakata, H., Itsuji, T.: Effect of residual stress on delamination from interface edge between nano-films. Eng. Fract. Mech. 70, 2089–2101 (2003)CrossRefGoogle Scholar
  197. 197.
    Hirakata, H., Takahashi, Y., Kitamura, T.: Role of plasticity on interface crack initiation from a free edge and propagation in a nano-component. Int. J. Fract. 145, 261–271 (2007)CrossRefGoogle Scholar
  198. 198.
    Hirakata, H., Kitamura, T., Yamamoto, Y.: Evaluation of interface strength of micro-dot on substrate by means of AFM. Int. J. Solids Struct. 41, 3243–3253 (2004)CrossRefGoogle Scholar
  199. 199.
    Takahashi, Y., Hirakata, H., Kitamura, T.: Quantitative evaluation of plasticity of a ductile nano-component. Thin Solid Films 516, 1925–1930 (2008)CrossRefGoogle Scholar
  200. 200.
    Kitamura, T., Hirakata, H., Satake, Y.: Applicability of fracture mechanics on brittle delamination of nanoscale film edge. JSME Int. J. Ser. A 47, 106–112 (2004)CrossRefGoogle Scholar
  201. 201.
    Hirakata, H., Nishijima, O., Fukuhara, N., et al.: Size effect on fracture toughness of freestanding copper nano-films. Mater. Sci. Eng. A 528, 8120–8127 (2011)CrossRefGoogle Scholar
  202. 202.
    Kitamura, T., Hirakata, H., Sumigawa, T., Shimada, T.: Fracture Nanomechanics. CRC Press, Boca Raton (2011)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Graduate School at ShenzhenHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Mechanical EngineeringKyoto UniversityKyotoJapan

Personalised recommendations