Advertisement

Acta Mechanica Sinica

, Volume 32, Issue 1, pp 170–180 | Cite as

Non-intrusive hybrid interval method for uncertain nonlinear systems using derivative information

  • Zhuang-Zhuang Liu
  • Tian-Shu WangEmail author
  • Jun-Feng Li
Research Paper

Abstract

This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arithmetic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the “wrapping effect” of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints.

Graphical Abstract

Keywords

Non-intrusive hybrid interval method Dynamic response analysis Uncertain nonlinear systems Polynomial approximation Interval arithmetic  Derivative information 

References

  1. 1.
    Chen, H.H.: Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration. J. Sound Vib. 273, 949–968 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cheng, H., Sandu, A.: Uncertainty quantification and apportionment in air quality models using the polynomial chaos method. Environ. Modell. Softw. 24, 917–925 (2009)CrossRefGoogle Scholar
  3. 3.
    Astill, C.J., Imosseir, S.B., Shinozuka, M.: Impact loading on structures with random properties. J. Struct. Mech. 1, 63–77 (1972)CrossRefGoogle Scholar
  4. 4.
    Sun, T.C.: A finite element method for random differential equations with random coefficients. SIAM J. Numer. Anal. 16, 1019–1035 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Li, J., Liao, S.: Response analysis of stochastic parameter structures under non-stationary random excitation. Comput. Mech. 27, 61–68 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, S.H., Liu, Z.S., Zhang, Z.F.: Random vibration analysis for large-scale structures with random parameters. Comput. Struct. 43, 681–685 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Yakov, B.H., Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, vol. 112. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  8. 8.
    Yurilev, C.C., Heriberto, R.F.: Comparation between some approaches to solve fuzzy differential equations. Fuzzy Sets Syst. 160, 1517–1527 (2009)CrossRefGoogle Scholar
  9. 9.
    Nieto, J.J., Khastan, A., Ivaz, K.: Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal. Hybrid Syst. 3, 700–707 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Bede, B., Rudas, I.J., Bencsik, A.L.: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177, 1648–1662 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Hanss, M.: The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst. 130, 277–289 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Moens, D., Vandepitte, D.: Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Arch. Comput. Methods. Eng. 13, 389–464 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Moens, D., Vandepitte, D.: A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Methods. Appl. Mech. Eng. 194, 1527–1555 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40, 5423–5439 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Yakov, B.H., Chen, G., Soong, T.T.: Maximum structural response using convex models. J. Eng. Mech. 122, 325–333 (1996)CrossRefGoogle Scholar
  17. 17.
    Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  18. 18.
    Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. J. Logic Algebr. Program. 64, 135–154 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Alefeld, G., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Gao, W.: Natural frequency and mode shape analysis of structures with uncertainty. Mech. Syst. Signal Process. 21, 24–39 (2007)Google Scholar
  21. 21.
    Chen, S., Lian, H., Yang, X.: Interval static displacement analysis for structures with interval parameters. Int. J. Numer. Methods Eng. 53, 393–407 (2002)Google Scholar
  22. 22.
    Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for IVPs for ODEs. Appl. Numer. Math. 42, 269–284 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105, 21–68 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Nedialkov, N.S.: Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Dissertation, University of Toronto (1999)Google Scholar
  25. 25.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4, 361–369 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Hoefkens, J.: Rigorous numerical analysis with high-order Taylor models. Dissertation, Michigan State University (2001)Google Scholar
  27. 27.
    Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5, 3–12 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. Sci. 4, 379–456 (2003)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57, 1145–1162 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Qiu, Z., Wang, X.: Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int. J. Solids Struct. 42, 4958–4970 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Qiu, Z., Ma, L., Wang, X.: Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J. Sound Vib. 319, 531–540 (2009)CrossRefGoogle Scholar
  32. 32.
    Wu, J., Zhao, Y.Q., Chen, S.H.: An improved interval analysis method for uncertain structures. Struct. Eng. Mech. 20, 713–726 (2005)CrossRefGoogle Scholar
  33. 33.
    Wu, J., Zhang, Y., Chen, L., et al.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Modell. 37, 4578–4591 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Jaulin, L., Kieffer, M., Didrit, O., et al.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, New York (2001)CrossRefGoogle Scholar
  35. 35.
    Moore, R.E.: Methods and Applications of Interval Analysis, vol. 2. Siam, Philadelphia (1979)CrossRefzbMATHGoogle Scholar
  36. 36.
    Neumaier, A.: The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions. Springer, Vienna (1993)CrossRefGoogle Scholar
  37. 37.
    Bowyer, A., Berchtold, J., Eisenthal, D., et al.: Interval methods in geometric modeling. In: Geometric Modeling and Processing 2000. Theory and Applications. Proceedings. IEEE (2000)Google Scholar
  38. 38.
    Shou, H.H., Martin, R., Voiculescu, I., et al.: Affine arithmetic in matrix form for polynomial evaluation and algebraic curve drawing. Prog. Nat. Sci. 12, 77–81 (2002)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Shou, H.H., Lin, H., Martin, R., et al.: Modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting. J. Comput. Appl. Math. 195, 155–171 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Martin, R., Shou, H., Voiculescu, I., et al.: Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des. 19, 553–587 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Gao, W., Zhang, N., Ji, J.C., et al.: Dynamic analysis of vehicles with uncertainty. Proc. Inst. Mech. Eng. Part D 222, 657–664 (2008)CrossRefGoogle Scholar
  42. 42.
    Wu, J., Luo, Z., Zhang, Y., et al.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95, 608–630 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of AerospaceTsinghua UniversityBeijingChina

Personalised recommendations