Skip to main content
Log in

An anisotropic micromechanics model for predicting the rafting direction in Ni-based single crystal superalloys

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An anisotropic micromechanics model based on the equivalent inclusion method is developed to investigate the rafting direction of Ni-based single crystal superalloys. The micromechanical model considers actual cubic structure and orthogonal anisotropy properties. The von Mises stress, elastic strain energy density, and hydrostatic pressure in different inclusions of micromechanical model are calculated when applying a tensile or compressive loading along the [001] direction. The calculated results can successfully predict the rafting direction for alloys exhibiting a positive or a negative mismatch, which are in agreement with pervious experimental and theoretical studies. Moreover, the elastic constant differences and mismatch degree of the matrix and precipitate phases and their influences on the rafting direction are carefully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nabarro, F.R.N.: Rafting in superalloy. Metall. Mater. Trans. A. 27, 513–530 (1996)

    Article  Google Scholar 

  2. Pollock, T.M., Argon, A.S.: Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall. Mater. 42, 1859–1874 (1994)

    Article  Google Scholar 

  3. Sakaguchi, M., Okazaki, M.: Fatigue life evaluation of a single crystal Ni-based superalloy, accompanying with change of microstructural morphology. Int. J. Fatigue. 29, 1959–1965 (2007)

    Article  MATH  Google Scholar 

  4. Tien, J.K., Copley, S.M.: The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals. Metall. Mater. Trans. B. 2, 215–219 (1971)

    Article  Google Scholar 

  5. Saito, M., Aoyama, T., Hidaka, K., et al.: Concentration profiles and the rafting mechanism of Ni base superalloys in the initial stage of high temperature creep tests. Scr. Mater. 34, 1189–1194 (1996)

    Article  Google Scholar 

  6. Zhang, Y., Wanderka, N., Schumacher, G., et al.: Phase chemistry of the superalloy SC16 after creep deformation. Acta Mater. 48, 2787–2793 (2000)

    Article  Google Scholar 

  7. Buffiere, J.Y., Ignat, M.: A dislocation based criterion for the raft formation in nickel-based superalloys single crystals. Acta Metall. Mater. 43, 1791–1797 (1995)

  8. Yue, Z.F., Lu, Z.Z., He, J.: Rafting prediction criterion for nickel-based single crystals under multiaxial stresses and crystallographic orientation dependence of creep behaviour. Acta Metall. Sin. 35, 585–588 (1999). (in Chinese)

    Google Scholar 

  9. Kundin, J., Mushongera, L., Goehler, T., et al.: Phase-field modeling of the \(\gamma ^{\prime }\)-coarsening behavior in Ni-based superalloys. Acta Mater. 60, 3758–3772 (2012)

    Article  Google Scholar 

  10. le Graverend, J.B., Cormier, J., Gallerneau, F., et al.: A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature. Int. J. Plastic. 59, 55–83 (2014)

    Article  Google Scholar 

  11. Socrate, S., Parks, D.M.: Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys. Acta Metall. Mater. 41, 2185–2209 (1993)

    Article  Google Scholar 

  12. Müller, L., Glatzel, U., Feller-Kniepmeier, M.: Calculation of the internal stresses and strains in the microstructure of a single crystal nickel-base superalloy during creep. Acta Metall. Mater. 41, 3401–3411 (1993)

    Article  Google Scholar 

  13. Zhou, L., Li, S.X., Chen, C.R., et al.: Three-dimensional finite element analysis of stresses and energy density distributions around \(\gamma ^{\prime }\) before coarsening loaded in the [110]-direction in Ni-based superalloy. Mater. Sci. Eng. A. 352, 300–307 (2003)

    Article  Google Scholar 

  14. Pineau, A.: Influence of uniaxial stress on the morphology of coherent precipitates during coarsening-elastic energy considerations. Acta Metall. 24, 559–564 (1976)

    Article  Google Scholar 

  15. Chang, J.C., Allen, S.M.: Elastic energy changes accompanying the gamma- prime rafting in nickel-base superalloys. J. Mater. Res. 6, 1843–1855 (1991)

    Article  Google Scholar 

  16. Miyazaki, T., Nakamura, K., Mori, H.: Experimental and theoretical investigations on morphological changes of \(\gamma ^{\prime }\) precipitates in Ni-Al single crystals during uniaxial stress-annealing. J. Mater. Res. 14, 1827–1837 (1979)

    Google Scholar 

  17. Ratel, N., Bruno, G., Bastie, P., et al.: Plastic strain-induced rafting of \(\gamma ^{\prime }\) precipitates in Ni superalloys: elasticity analysis. Acta Mater. 54, 5087–5093 (2006)

    Article  Google Scholar 

  18. Ratel, N., Bastie, P., Mori, T., et al.: Application of anisotropic inclusion theory to the energy evaluation for the matrix channel deformation and rafting geometry of \(\gamma -\gamma ^{\prime }\) Ni Superalloys. Mater. Sci. Eng. A. 505, 41–47 (2009)

    Article  Google Scholar 

  19. Sakaguchi, M., Okazaki, M.: Micromechanics of the damage induced cellular microstructure in single crystal Ni-based superalloys. Acta Metall. Sin. 17, 361–368 (2004)

    Google Scholar 

  20. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  21. Wu, W.P., Guo, Y.F., Dui, G.S., et al.: A micromechanical model for predicting the directional coarsening behavior in Ni-based superalloys. Comput. Mater. Sci. 44, 259–264 (2008)

    Article  Google Scholar 

  22. Chen, C.R., Li, S.X., Zhang, Q.: Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia. Mater. Sci. Eng. A. 272, 398–409 (1999)

    Article  Google Scholar 

  23. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Leiden (1987)

    Book  Google Scholar 

  24. Onaka, S., Kobayashi, N., Kato, M.: Two-dimensional analysis on elastic strain energy due to a uniformly eigenstrained supercircular inclusion in an elastically anisotropic material. Mech. Mater. 34, 117–125 (2002)

    Article  Google Scholar 

  25. Pan, E.: Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes. J. Mech. Phys. Solids. 52, 567–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ting, T.C.T.: Anisotropic Elasticity. Oxford University, Oxford (1996)

    MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by The National Natural Science Foundation of China (Grants 11102139 and 11472195), and The Natural Science Foundation of Hubei Province of China (Grant 2014CFB713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ping Wu.

Appendices

Appendix 1

For anisotropic materials, the elastic constants matrix is symmetric and can be expressed as

$$\begin{aligned} {\varvec{C}}=\left[ {{ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {C_{11}} &{} {C_{12}} &{} {C_{13}} &{} {C_{14}} &{} {C_{15}} &{} {C_{16}} \\ &{} {C_{22}} &{} {C_{23}} &{} {C_{24}} &{} {C_{25}} &{} {C_{26}} \\ &{} &{} {C_{33}} &{} {C_{34}} &{} {C_{35}} &{} {C_{36}} \\ &{} &{} &{} {C_{44}} &{} {C_{45}} &{} {C_{46}} \\ &{} {\hbox {Sym.}} &{} &{} &{} {C_{55}} &{} {C_{56}} \\ &{} &{} &{} &{} &{} {C_{66}} \\ \end{array}}} \right] . \end{aligned}$$
(24)

According to Ting [26], the Stroh eigenvalues \(p_{r}\) and the eigenvectors \({\varvec{a}}_{r}\) satisfy the following eigenrelation

$$\begin{aligned} \left[ {{\varvec{Q}}+p\left( {{\varvec{R}}+{\varvec{R}}^{\mathrm{T}}} \right) +p^{2}{\varvec{T}}} \right] {\varvec{a}}=0, \end{aligned}$$
(25)

where the superscript T denote the transpose of matrix, and \({\varvec{Q}}, {\varvec{R}}, {\varvec{T}}\) are given by

$$\begin{aligned} \begin{array}{l} {\varvec{Q}}=\left[ {{\begin{array}{ccc} {C_{11}} &{}\quad {C_{16}} &{}\quad {C_{15}} \\ {C_{16}} &{}\quad {C_{66}} &{}\quad {C_{56}} \\ {C_{15}} &{}\quad {C_{56}} &{}\quad {C_{55}} \\ \end{array}}} \right] ,\quad {\varvec{R}}=\left[ {{ \begin{array}{ccc} {C_{16}} &{}\quad {C_{12}} &{}\quad {C_{14}} \\ {C_{66}} &{}\quad {C_{26}} &{}\quad {C_{46}} \\ {C_{56}} &{}\quad {C_{25}} &{}\quad {C_{45}} \\ \end{array}}} \right] , \\ {\varvec{T}}=\left[ {{ \begin{array}{ccc} {C_{66}} &{}\quad {C_{26}} &{}\quad {C_{46}} \\ {C_{26}} &{}\quad {C_{22}} &{}\quad {C_{24}} \\ {C_{46}} &{}\quad {C_{24}} &{}\quad {C_{44}} \\ \end{array}}} \right] . \\ \end{array}. \end{aligned}$$
(26)

Due to \({\varvec{a}}\ne {\varvec{0}}\), p satisfies the sextic equation

$$\begin{aligned} \left| {{\varvec{Q}}+p\left( {{\varvec{R}}+{\varvec{R}}^{\mathrm{T}}} \right) +p^{2}{\varvec{T}}} \right| =0. \end{aligned}$$
(27)

According to Eq. (27), the solutions to the sextic equation are three pairs of complex conjugate roots for p. We take \(\hbox {Im}p_{r}> 0\), \(r = 1, 2, 3\).

Introduce the matrix \({\varvec{N}}\) and vector \({\varvec{b}}\), and the expression of \({\varvec{N}}\) is

$$\begin{aligned} {\varvec{N}}=\left[ {{\begin{array}{c@{\quad }c} {-{\varvec{T}}^{-1}{\varvec{R}}^{\mathrm{T}}}&{} {{\varvec{T}}^{-1}} \\ {-{\varvec{Q}}+{\varvec{RT}}^{-1}{\varvec{R}}^{\mathrm{T}}}&{} {-{\varvec{RT}}^{-1}} \\ \end{array}}} \right] . \end{aligned}$$
(28)

Meanwhile, \({\varvec{p}}, {\varvec{a}}, {\varvec{b}}\), and \({\varvec{N}}\) satisfy the following relation

$$\begin{aligned}&{\varvec{N}}\left[ {{\begin{array}{l} {{\varvec{a}}_{r}} \\ {{\varvec{b}}_{r}} \\ \end{array}}} \right] =p_{r}\left[ {{\begin{array}{l} {{\varvec{a}}_{r}} \\ {{\varvec{b}}_{r}} \\ \end{array}}} \right] \quad r=1,2,3, \end{aligned}$$
(29)
$$\begin{aligned}&{\varvec{b}}_{\alpha }^{\mathrm{T}} {\varvec{a}}_{\beta } +{\varvec{a}}_{\alpha }^{\mathrm{T}} {\varvec{b}}_{\beta } =\delta _{\alpha \beta } , \end{aligned}$$
(30)

where \(\delta _{\alpha \beta }\) is Kronecker delta.

Appendix 2

For the integral of Eq. (20), if the inclusion is rectangular, the contribution of each straight-line segment along the boundary of the inclusion can be obtained. We suppose the start point of certain straight-line segments is \(\left( {x_{1},y_{1}} \right) \), and the end point is \(\left( {x_{2},y_{2}} \right) \). As in Pan [25], the contribution of this straight-line segment along the boundary of the inclusion is

$$\begin{aligned} \varepsilon _{\beta \alpha }= & {} 0.5n_{i}C_{ijlm} \varepsilon _{lm}^{**} \frac{l}{\uppi }\hbox {Im}\left\{ {\sum \limits _{r=1}^{3}{A{ }_{jr}A_{\beta r} h_{r,\alpha }}} \right\} \nonumber \\&+\,0.5n_{i}C_{ijlm} \varepsilon _{lm}^{**} \frac{l}{\uppi }\hbox {Im}\left\{ {\sum \limits _{r=1}^{3}{A{ }_{jr}A_{\alpha r} h_{r,\beta }}} \right\} , \nonumber \\ \varepsilon _{\alpha 3}= & {} 0.5n_{i}C_{ijlm} \varepsilon _{lm}^{**} \frac{l}{\uppi }\hbox {Im}\left\{ {\sum \limits _{r=1}^{3}{A{ }_{jr}A_{3r} h_{r,\alpha }}} \right\} , \end{aligned}$$
(31)

where \(\alpha \), \(\beta = 1, 2\); \(r = 1, 2, 3\); \(n_{i}\) is the outward normal component along the line segment: \(n_{1}=\frac{y_{2}-y_{1}}{l}\), \(n_{2}=-\frac{x_{2}-x_{1}}{l}\); \(l=\sqrt{\left( {x_{2}-x_{1}} \right) ^{2}+\left( {y_{2}-y_{1}} \right) ^{2}}\) is the length of the line segment; and \(h_{r,1}\) , \(h_{r,2}\) are expressed as follows

$$\begin{aligned} h_{r,1}= & {} \frac{-1}{\left( {x_{2}-x_{1}} \right) +p_{r}\left( {y_{2}-y_{1}} \right) }\ln \left( {\frac{x_{2}+p_{r}y_{2}-s_{r}}{x_{1}+p_{r}y_{1}-s_{r}}} \right) , \nonumber \\ h_{r,2}= & {} \frac{-p_{r}}{\left( {x_{2}-x_{1}} \right) +p_{r}\left( {y_{2}-y_{1}} \right) }\ln \left( {\frac{x_{2}+p_{r}y_{2}-s_{r}}{x_{1}+p_{r}y_{1}-s_{r}}} \right) .\nonumber \\ \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SY., Wu, WP. & Chen, MX. An anisotropic micromechanics model for predicting the rafting direction in Ni-based single crystal superalloys. Acta Mech. Sin. 32, 135–143 (2016). https://doi.org/10.1007/s10409-015-0499-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0499-1

Keywords

Navigation