Skip to main content
Log in

Multiple bifurcations and local energy minimizers in thermoelastic martensitic transformations

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Thermoelastic martensitic transformations in shape memory alloys can be modeled on the basis of nonlinear elastic theory. Microstructures of fine phase mixtures are local energy minimizers of the total energy. Using a one-dimensional effective model, we have shown that such microstructures are inhomogeneous solutions of the nonlinear Euler–Lagrange equation and can appear upon loading or unloading to certain critical conditions, the bifurcation conditions. A hybrid numerical method is utilized to calculate the inhomogeneous solutions with a large number of interfaces. The characteristics of the solutions are clarified by three parameters: the number of interfaces, the interface thickness, and the oscillating amplitude. Approximated analytical expressions are obtained for the interface and inhomogeneity energies through the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kaufman, L., Cohen, M.: Martensitic transformations. In: Chalmers, B., King, R. (eds.) Progress in Metal Physics, vol. 7, 165–246. Pergamon Press, Oxford (1958)

  2. Nishiyama, M.: Transformations. Academic Press, San Diego (1978)

    Google Scholar 

  3. Olson, G.B., Cohen, M.: Thermoelastic behavior in martensitic transformations. Scripta Met. 9, 1247–1254 (1975)

    Article  Google Scholar 

  4. Duerig, T.W., Melton, K.N., Stöckel, D.: Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, London (1990)

    Google Scholar 

  5. Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Wu, Z.Q., Zhang, Z.H.: Force-displacement characteristics of simply supported beam laminated with shape memory alloys. Acta Mechanica Sinica 27, 1065–1070 (2011)

    Article  MATH  Google Scholar 

  7. Yang, S.B., Xu, M.: Finite element analysis of 2D SMA beam bending. Acta Mechanica Sinica 27, 738–748 (2011)

    Article  MATH  Google Scholar 

  8. Rong, Q.Q., Cui, Y.H., Shimada, T., et al.: Self-shaping of bioinspired chiral composites. Acta Mechanica Sinica 30, 533–539 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bhattacharya, K.: Microstructure of Martensite. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  10. Cheng, P., Xingyao, W., Yongzhong, H.: Characteristics of stress-induced transformation and microstructure evolution in Cu-based SMA. Acta Mechanica Solida Sinica 21, 1–8 (2008)

    Article  Google Scholar 

  11. Roubicek, T.: Models of microstructure evolution in shape memory alloys. In: Ponte Castaneda, P., et al. (eds.) Nonlinear Homogenisation and Its Applications to Composites, Polycrystals and Smart Materials, 269–304. Kluwer Academic publishers, Dordrecht (2004)

  12. Patoor, E., Lagoudas, D.C., Entchev, P.B., et al.: Shape memory alloys, Part I: general properties and modeling of single crystals. Mech. Mater. 38, 391–429 (2006)

  13. Lagoudas, D.C., Entchev, P.B., Popov, P., Patoor, E., Brinson, L.Catherine, Gao, Xiujie., et al.: Shape memory alloys, Part II: modeling of polycrystals. Mech. Mater. 38, 430–462 (2006)

  14. Porta, M., Lookman, T.: Heterogeneity and phase transformation in materials : energy minimization, iterative methods and geometric nonlinearity. Acta Materialia 61, 5311–5340 (2013)

    Article  Google Scholar 

  15. Cesana, P., Porta, M., Lookman, T.: Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids 72, 174–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guquan, S., Qingping, S., Kehchih, H.: Effect of microstructure on the hardening and softening behavIors of polycrystalline shape memory alloys Part I: Micromechanics constitutive modeling. Acta Mechanica Sinica 16, 309–324 (2000)

    Article  Google Scholar 

  17. Xiangyang, Z., Qingping, S., Shouwen, Y.: On the strain jump in shape memory alloys–a crystallographic-based mechanics analysis. Acta Mechanica Sinica 15, 134–144 (1999)

    Article  Google Scholar 

  18. Li, J.Y., Lei, C.H., Li, L.J., et al.: Unconventional phase field simulations of transforming materials with evolving microstructures. Acta Mechanica Sinica 28, 915–927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maxwell, J.C., Lord, Rayleigh: Encyclopedia Britannica (1876)

  20. Christian, J.W.: The Theory of Transformations in Metals and Alloys. Pergamon Press, New York (2002)

    Google Scholar 

  21. Khachaturyan, A.G.: Theory of Structural Transformations in Solids. John Wiley & Sons, New York (1983)

    Google Scholar 

  22. Mueller, I., Seelecke, S.: Thermodynamic aspects of shape memory alloys. Math. Comput. Model 34, 1307–1355 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, Y., Yin, H., Sun, Q.P., et al.: Rate dependence of temperature fields and energy dissipations in non-static pseudoelasticity. Contin. Mech. Thermodyn. 24, 675–695 (2012)

  24. Yin, H., Yan, Y., Huo, Y.Z., et al.: Rate dependent damping of single crystal CuAlNi shape memory alloy. Mater. Lett. 109, 287–290 (2013)

  25. Hao, Yin, Yongjun, He, Qingping, Sun: Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J. Mech. Phys. Solids 67, 100–128 (2014)

    Article  Google Scholar 

  26. Shield, T.W.: Orientation dependence of the pseudoelastic behaviour of single crystals of Cu–Al–Ni in tension. J. Mech. Phys. Solids 43, 869–895 (1995)

    Article  Google Scholar 

  27. Waitz, T., Antretterb, T., Fischerb, F.D., et al.: Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 55, 419–444 (2007)

  28. Ueland, S.M., Schuh, C.A.: Transition from many domain to single domain martensite morphology in small-scale shape memory alloys. Acta Materialia 61, 5618–5625 (2013)

    Article  Google Scholar 

  29. Sun, Q.P., Aslan, A., Li, M.P., et al.: Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci. China Technol. Sci. 57, 671–679 (2014)

    Article  Google Scholar 

  30. Ericksen, J.L.: Equilibrium of bars. J. Elast. 5, 191–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carr, J., Gurtin, M.E., Slemrod, M.: Structured phase transition on a finite interval. Arch. Rat. Mech. Anal. 86, 317–351 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Müller, S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Cal. Var. Partial Diff. Equ. 1, 169–204 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Truskinovsky, L., Zanzotto, G.: Ericksen’s bar revisited: energy wiggles. J. Mech. Phys. Solids 44, 1371–1408 (1996)

    Article  MathSciNet  Google Scholar 

  34. Vainchtein, A., Healey, T., Rosakis, P., et al.: The role of the spinodal in one dimensional phase transitions microstructures. Phys. Rev. D. 115, 29–48 (1998)

  35. Anna, V., Healey, T.J., Rosakis, P.: Bifurcation and metastability in a new one-dimensional model for martensitic phase transitions. Comput. Methods Appl. Mech. Eng. 170, 407–421 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ren, X., Truskinovsky, L.: Finite scale microstructures in nonlocal elasticity. J. Elast. 59, 319–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vainchtein, A.: Dynamics of phase transitions and hysteresis in a viscoelastic Ericksen’s bar on an elastic foundation. J. Elast. 57, 243–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vainchtein, A.: Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions. J. Nonlinear Sci. 9, 697–719 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xuan, C., Peng, C., Huo, Y.: One dimensional model of Martensitic transformation solved by Homotopy analysis method. Z. Naturforsch 67a, 230–238 (2012)

    Google Scholar 

  40. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/ CRC, Boca Raton (2003)

    Book  Google Scholar 

  41. Liao, S.: Homotopy Analysis Method in Nonlinear Differential Equations. Higher education press, Beijing (2011)

    Google Scholar 

  42. Wechsler, M., Lieberman, D., Read, T.: On the theory of the formation of martensite. Trans. AIME J. Metals 179, 1503–1515 (1953)

    Google Scholar 

  43. Bowles, J., MacKenzie, J.: The crystallography of martensitic transformations I and II. Acta Metal. Mater. 2, 129–147 (1954)

    Article  Google Scholar 

  44. Santman, S., Guo, Z.: Large shearing oscillations of incompressible nonlinear elastic. J. Elast. 14, 249–262 (1984)

    Article  Google Scholar 

  45. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kohn, R., Müller, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure. Appl. Math. 47, 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Huo, Y., Muller, I.: Interfacial and inhomogeneity penalties in phase transitions. Contin. Mech. Thermodyn. 15, 395–407 (2003)

  48. Hui-Hui, D., Zongxi, C.: An analytical study on the instability phenomena during the phase transitions in a thin strip under uniaxial tension. J. Mech. Phys. Solids 60, 691–710 (2012)

  49. Kalies, W.: Regularized models of phase transformation in one-dimensional nonlinear elasticity. [Ph. D. Thesis], Cornell University (1994)

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grants 11461161008 and 11272092)..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Huo.

Additional information

Dedicated to Professor Zhongheng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, C., Ding, S. & Huo, Y. Multiple bifurcations and local energy minimizers in thermoelastic martensitic transformations. Acta Mech. Sin. 31, 660–671 (2015). https://doi.org/10.1007/s10409-015-0491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0491-9

Keywords

Navigation