Skip to main content
Log in

Modelling long-term deformation of granular soils incorporating the concept of fractional calculus

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Many constitutive models exist to characterise the cyclic behaviour of granular soils but can only simulate deformations for very limited cycles. Fractional derivatives have been regarded as one potential instrument for modelling memory-dependent phenomena. In this paper, the physical connection between the fractional derivative order and the fractal dimension of granular soils is investigated in detail. Then a modified elasto-plastic constitutive model is proposed for evaluating the long-term deformation of granular soils under cyclic loading by incorporating the concept of factional calculus. To describe the flow direction of granular soils under cyclic loading, a cyclic flow potential considering particle breakage is used. Test results of several types of granular soils are used to validate the model performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aursudkij, B., McDowell, G.R., Collop, A.C.: Cyclic loading of railway ballast under triaxial conditions and in a railway test facility. Granul. Matter 11, 391–401 (2009)

    Article  Google Scholar 

  2. Wichtmann, T., Niemunis, A., Triantafyllidis, T.: On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils. Int. J. Numer. Anal. Meth. Geomech. 34, 409–440 (2010)

  3. Wichtmann, T., Niemunis, A., Triantafyllidis, T.H.: Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. Soils Found. 49, 711–728 (2009)

  4. Rahman, M., Baki, M., Lo, S.: Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter. Int. J. Geomech. 14, 254–266 (2014)

    Article  Google Scholar 

  5. Indraratna, B., Thakur, P.K., Vinod, J.S.: Experimental and numerical study of railway ballast behavior under cyclic loading. Int. J. Geomech. 10, 136–144 (2010)

    Article  Google Scholar 

  6. Chang, C., Whitman, R.: Drained permanent deformation of sand due to cyclic loading. J. Geotech. Eng. 114, 1164–1180 (1988)

    Article  Google Scholar 

  7. Khalili, N., Habte, M., Valliappan, S.: A bounding surface plasticity model for cyclic loading of granular soils. Int. J. Numer. Meth. Eng. 63, 1939–1960 (2005)

    Article  MATH  Google Scholar 

  8. Liu, H.B., Zou, D.G.: Associated generalized plasticity framework for modeling gravelly soils considering particle breakage. J. Eng Mech. 139, 606–615 (2013)

    Article  Google Scholar 

  9. Sevi, A., Ge, L.: Cyclic behaviors of railroad ballast within the parallel gradation scaling framework. J. Mater. Civil Eng. 24, 797–804 (2012)

    Article  Google Scholar 

  10. Suiker, A.S., Selig, E.T., Frenkel, R.: Static and cyclic triaxial testing of ballast and subballast. J. Geotech. Geoenviron. Eng. 131, 771–782 (2005)

    Article  Google Scholar 

  11. Sun, Y., Xiao, Y., Hanif, K.: Compressibility dependence on grain size distribution and relative density in sands. Sci. China Tech. Sci. 58, 443–448 (2015)

    Article  Google Scholar 

  12. Sun, Y., Xiao, Y., Ju, W.: Bounding surface model for ballast with additional attention on the evolution of particle size distribution. Sci. China Tech. Sci. 57, 1352–1360 (2014)

    Article  Google Scholar 

  13. Sun, Y., Indraratna, B., Nimbalkar, S.: Three-dimensional characterisation of particle size and shape for ballast. Géotech. Lett. 4, 197–202 (2014)

    Article  Google Scholar 

  14. Kan, M., Taiebat, H., Khalili, N.: Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials. Int. J. Geomech. 14, 239–253 (2014)

    Article  Google Scholar 

  15. Xiao, Y., Liu, H.L., Chen, Y., et al.: Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material. J. Geotech. Geoenviron. Eng. 140, 04014064 (2014). doi:10.1061/(ASCE)GT.1943-5606.0001178

    Article  Google Scholar 

  16. Liu, H., Zou, D., Liu, J.: Constitutive modeling of dense gravelly soils subjected to cyclic loading. Int. J. Numer. Anal. Meth Geomech. 38, 1503–1518 (2014)

    Article  Google Scholar 

  17. Indraratna, B., Lackenby, J., Christie, D.: Effect of confining pressure on the degradation of ballast under cyclic loading. Géotechnique 55, 325–328 (2005)

    Article  Google Scholar 

  18. Sun, Q.D., Indraratna, B., Nimbalkar, S.: Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast. Géotechnique 64, 746–751 (2014)

    Article  Google Scholar 

  19. Darve, F., Labanieh, S.: Incremental constitutive law for sands and clays: simulations of monotonic and cyclic tests. Int. J. Numer. Anal. Meth. Geomech. 6, 243–275 (1982)

    Article  MATH  Google Scholar 

  20. McDowell, G.R., de Bono, J.P., Yue, P., et al.: Micro mechanics of isotropic normal compression. Géotech. Lett. 3, 166–172 (2013)

    Article  Google Scholar 

  21. McDowell, G.R., Daniell, C.M.: Fractal compression of soil. Géotechnique 51, 173–176 (2001)

    Article  Google Scholar 

  22. Indraratna, B., Thakur, P.K., Vinod, J.S., et al.: Semiempirical cyclic densification model for ballast incorporating particle breakage. Int. J. Geomech. 12, 260–271 (2012)

    Article  Google Scholar 

  23. Woo, S.I., Salgado, R.: Bounding surface modeling of sand with consideration of fabric and its evolution during monotonic shearing. Int. J. Solids Struct. 63, 277–288 (2015)

  24. Sun, Y., Liu, H.L., Xiao, Y., et al.: Modeling of rheological behavior of geomaterials based on fractional viscoelastic equation with variable parameters. Instrum. Test. Model. Soil Rock Behav. 222, 107–114 (2011)

  25. Yin, D., Zhang, W., Cheng, C., et al.: Fractional time-dependent Bingham model for muddy clay. J. Non-Newton. Fluid Mech. 187, 32–35 (2012)

  26. Yin, D., Zhang, W., Cheng, C., et al.: Fractional order constitutive model of geomaterials under the condition of triaxial test. Int. J. Numer. Anal. Meth. Geomech. 37, 961–972 (2013)

    Article  Google Scholar 

  27. Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Soliton Fract. 28, 923–929 (2006)

    Article  MATH  Google Scholar 

  28. Chen, W., Sun, H., Zhang, X.D., et al.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kimoto, S., Shahbodagh, K.B., Mirjalili, M., et al.: Cyclic elastoviscoplastic constitutive model for clay considering nonlinear kinematic hardening rules and structural degradation. Int. J. Geomech. (2015). doi:10.1061/(ASCE)GM.1943-5622.0000327

  31. Kaliakin, V.N., Dafalias, Y.F.: Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils. Soils Found. 30, 11–24 (1990)

  32. Suiker, A.S.J., de Borst, R.: A numerical model for the cyclic deterioration of railway tracks. Int. J. Numer. Meth. Eng. 57, 441–470 (2003)

    Article  MATH  Google Scholar 

  33. Niemunis, A., Wichtmann, T., Triantafyllidis, T.: A high-cycle accumulation model for sand. Comput. Geotech. 32, 245–263 (2005)

    Article  Google Scholar 

  34. François, S., Karg, C., Haegeman, W., et al.: A numerical model for foundation settlements due to deformation accumulation in granular soils under repeated small amplitude dynamic loading. Int. J. Numer. Anal. Meth. Geomech. 34, 273–296 (2010)

    MATH  Google Scholar 

  35. Locke, M., Indraratna, B., Adikari, G.: Time-dependent particle transport through granular filters. J. Geotech. Geoenviron. Eng. 127, 521–529 (2001)

    Article  Google Scholar 

  36. Indraratna, B., Raut, A.K., Khabbaz, H.: Constriction-based retention criterion for granular filter design. J. Geotech. Geoenviron. Eng. 133, 266–276 (2007)

    Article  Google Scholar 

  37. Dodds, P.S., Weitz, J.S.: Packing-limited growth. Phys. Rev. E 65, 056108 (2002)

    Article  Google Scholar 

  38. Delaney, G.W., Hutzler, S., Aste, T.: Relation between grain shape and fractal properties in random Apollonian packing with grain rotation. Phys. Rev. Lett. 101, 120602 (2008)

    Article  Google Scholar 

  39. Russell, A.R.: Water retention characteristics of soils with double porosity. Eur. J. Soil Sci. 61, 412–424 (2010)

    Article  Google Scholar 

  40. McDowell, G.: A family of yield loci based on micro mechanics. Soils Found. 40, 133–137 (2000)

    Google Scholar 

  41. Liu, M., Carter, J.P.: On the volumetric deformation of reconstituted soils. Int. J. Numer. Anal. Meth. Geomech. 24, 101–133 (2000)

    Article  MATH  Google Scholar 

  42. Chen, C., Ge, L., Zhang, J.: Modeling permanent deformation of unbound granular materials under repeated loads. Int. J. Geomech. 10, 236–241 (2010)

    Article  Google Scholar 

  43. Lackenby, J.: Triaxial behaviour of ballast and the role of confining pressure under cyclic loading. [PhD Thesis], University of Wollongong, New South Wales (2006)

  44. Lekarp, F., Dawson, A.: Modelling permanent deformation behaviour of unbound granular materials. Constr. Build Mater. 12, 9–18 (1998)

    Article  Google Scholar 

  45. Esveld, C.: Modern railway track. MRT Productions, Zaltbommel (2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor W. Chen and Dr. Xiaodi Zhang in the Department of Engineering Mechanics, Hohai University, for their kind instruction and continuous inspiration on several fundamentals of the fractional calculus during the undergraduate period. The authors would also like to thank Mr. Rodger Paton at University of Wollongong for his technical assistance in computer programing. The financial supports provided by the Fundamental Research Funds (Grant 106112015CDJXY200008) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Xiao, Y., Zheng, C. et al. Modelling long-term deformation of granular soils incorporating the concept of fractional calculus. Acta Mech. Sin. 32, 112–124 (2016). https://doi.org/10.1007/s10409-015-0490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0490-x

Keywords

Navigation