Skip to main content
Log in

Studying thin film damping in a micro-beam resonator based on non-classical theories

  • Research paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of predicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theories. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the resonator have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nguyen, C.T.C.: Vibrating RF MEMS for next generation wireless applications, Proceedings of the Custom Integrated Circuits Conference, Orlando, FL, 3–6 October. IEEE, Piscataway (2004)

  2. Maali, A., Hurth, C., Boisgard, R., et al.: Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids. J. Appl. Phys. 97, 074907 (2005). doi:10.11063/1.1873060

    Article  Google Scholar 

  3. Rezazadeh, G., Ghanbari, M., Mirzaee, I., et al.: On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement 43, 1516–1524 (2010). doi:10.1016/j.measurement.2010.08.022

  4. Vahdat, A.S., Rezazadeh, G.: Effects of axial and residual stresses on thermo elastic damping in capacitive micro-beam resonator. J. Franklin Inst. 348, 622–639 (2011). doi:10.1007/s00707-012-0622-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, C.Y.: The squeezing of a fluid between two plates. ASME J. Appl. Mech. 43, 579–582 (1976). doi:10.1115/1.3423935

    Article  MATH  Google Scholar 

  6. Nayfeh, H., Younis, M.I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J. Micromech. Microeng. 14, 170–181 (2004). doi:10.1088/0960-1317/14/2/002

    Article  Google Scholar 

  7. Hashimoto, H.: Viscoelastic squeeze film characteristics with inertia effects between two parallel circular plates under sinusoidal motion. ASME J. Tribol. 116, 110–117 (1994). doi:10.1115/1.2927034

    Article  Google Scholar 

  8. Newell, W.E.: Miniaturization of tuning forks. Science 161, 1320–1326 (1968)

    Article  Google Scholar 

  9. Zook, J.D., Burns, D.W., Guckel, H., et al.: Characteristics of polysilicon resonant microbeams. Sens. Actuators 35, 290–294 (1992)

    Article  Google Scholar 

  10. Legtenberg, R., Tilmans, H.A.: Electrostatically driven vacuum-encapsulated polysilicon resonators. Sens. Actuators 45, 57–66 (1994). doi:10.1016/0924-4247(94)00812-4

    Article  Google Scholar 

  11. Starr, J. B.: Squeeze-film damping in solid-state accelerometers. in Proceeding. IEEE Solid-State Sens. Actuators Workshop, 44–47 (1994)

  12. Yang, Y. J., Gretillat, M. A., Senturia, S. D.: Effect of air damping on the dynamics of nonuniform deformations of microstructures. IEEE. International conference of solid state sens. Actuators, 1093–1096 (1997)

  13. Hung, E.S., Senturia, S.D.: Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulations runs. JMEMS 8, 280–289 (1999). doi:10.1109/84.788632

    Google Scholar 

  14. Pandey, A.K., Pratap, R.: Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J. Micromech. Microeng. 17, 2475–2484 (2007). doi:10.1088/0960-1317/17/12/013

    Article  Google Scholar 

  15. Younis, M.I., Nayfeh, A.H.: Simulation of squeeze-film damping of microplates actuated by large electrostatic load. ASME. J. Comput. Nonlinear Dynam. 2, 101–112 (2007). doi:10.1115/1.2727491

    Google Scholar 

  16. Chatrejee, S., Pohit, G.: A large deflection model for the pull-in analysis of electrostatically actuated micro cantilever beams. J. Sound Vib. 322, 2008 (2009). doi:10.1016/j.jsv.2008.11.046

  17. Chatrejee, S., Pohit, G.: Squeeze- film characteristics of cantilever micro-resonators for higher modes of flexural vibration. Int. J. Eng. Sci. Technol. 2, 187–199 (2010)

    Google Scholar 

  18. Khatami, F., Rezazadeh, G.: Dynamic response of a torsional micromirror to electrostatic force and mechanical shock. Microsyst. Technol. 15, 535–545 (2009). doi:10.1007/s00542-008-0738-5

    Article  Google Scholar 

  19. Feng, C., Zhao, Y.P., Liu, D.Q.: Squeeze film effect in MEMS devices with perforated plates for small amplitude vibration. Microsyst. Technol. 13, 625–633 (2007). doi:10.1007/s00542-006-0285-x

    Article  Google Scholar 

  20. Fleck, N.A., Muller, G.M., Ashby, M.F.: Strain gradient plasticity: theory and experiment. J. Acta Metall. Mater. 42, 475–487 (1992). doi:10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  21. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. J. Acta Mater. 46, 109–5115 (1998). doi:10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  22. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness With relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005). doi:10.1088/0960-1317/15/5/024

    Article  Google Scholar 

  23. Kong, Sh, Zhou, Sh, Zhifeng, N., et al.: The size-dependent natural frequency of Bernoulli-Euler micro-beams. J. Eng. Sci. 46, 427–437 (2008). doi:10.1016/j.ijengsci.2007.10.002

    Article  MATH  Google Scholar 

  24. Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Nonlinear behavior of capacitive micro-beams based on strain gradient theory. J. Mech. Sci. Technol. 28, 1141–1151 (2014). doi:10.1007/s12206-014-0102-x

    Article  Google Scholar 

  25. Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Bifurcation analysis of a capacitive Micro-resonator considering non-local elasticity theory. Int. J. Nonlinear Sci. Num. Simul. 15, 241–249 (2014). doi:10.1515/ijnsns-2013-0111

    MathSciNet  Google Scholar 

  26. Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Micro-inertia effects on the dynamic characteristics of micro-beams considering couple stress theory. Mech. Res. Commun. 60, 74–80 (2014). doi:10.1016/j.mechrescom.2014.06.003

    Article  Google Scholar 

  27. Blech, J.J.: On isothermal squeeze films. J. Tribol. 105, 615–620 (1983). doi:10.1115/1.3254692

    Google Scholar 

  28. Veijola, T.: Compact models for squeezed-film dampers with inertial and rarefied gas effects. J. Micromech. Microeng. 14, 1109–1118 (2004). doi:10.1088/0960-1317/14/7/034

    Article  Google Scholar 

  29. Ye, W., Wang, X., Hemmert, W., et al.: Air damping in lateral oscillating micro-resonators: a numerical and experimental Study. JMEMS 12, 557–566 (2003). doi:10.1109/JMEMS.2003.817895

    Google Scholar 

  30. Kucaba-Pietal, A.: Microchannels flow modelling with the micropolar fluid theory. Bull. Pol. Acad. Sci. 52, 209–213 (2004)

    MATH  Google Scholar 

  31. Eringen, A.C.: Theory of micro-polar fluids. J. Appl. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  32. Kucaba-Pietal, A.: Applicability of the micropolar fluid theory in solving microfluidics problems. Proceedings 1st European Conference on Microfluidics, Bologna (2008)

  33. Chen, J., Liang, C., Lee, J.D.: Theory and simulation of micropolar fluid dynamics. J. Nanoeng. Nanosyst. 224, 31–39 (2011). doi:10.1177/1740349911400132

    Google Scholar 

  34. Deo, S., Shukla, P.: Creeping flow of micro-polar fluid past a fluid sphere with non-zero spin boundary conditions. Int. J. Eng. Technol. 2, 67–76 (2010). doi:10.14419/ijet.vil2.5

    Google Scholar 

  35. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  36. Papautskya, I., Brazzlea, J., Ameelb, T., et al.: Laminar fluid behavior in microchannels using micropolar fluid theory. Sens. Actuators 73, 101–108 (1999). doi:10.1016/S0924-4247(98)00261-1

    Article  Google Scholar 

  37. Hutcherson, S. M.: Theoretical and Numerical Studies of the Air Damping of Micro-Resonators in the Non-Continuum Regime. Ph.D thesis, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology (2004)

  38. Hirschfelder, J. O., Curtis, C. F., Bird, R. B.: Molecular Theory of Gases and Liquids, Wiley, NewYork, corrected printing, chapters 5 and 11 (1964)

  39. Veijola, T., Turowski, M.: Compact damping models for laterally moving microstructures with gas-rarefaction effects. JMEM 10, 263–272 (2001). doi:10.1109/84.925777

    Google Scholar 

  40. Eringen, A.C.: Theory of thermo micro-polar fluids. J. Math. Anal. Appl. 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  41. Ahmadi, G.: Self-similar solution of incompressible micro-polar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  42. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31, 2324–2329 (2010). doi:10.1016/j.matdes.2009.12.006

    Article  Google Scholar 

  43. Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32, 1435–1444 (2011). doi:10.1016/j.matdes.2010.08.046

    Article  MATH  Google Scholar 

  44. Gad-el-Hak.: The MEMS Handbook. CRC Press, Boca Raton, Florida (2002)

  45. Wang, F.C., Zhao, Y.P.: Slip boundary conditions based on molecular kinetic theory. The critical shear stress and the energy dissipation at the liquid-solid interface. Soft Matter 18, 8628–8634 (2011). doi:10.1039/C1SM05543G

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Hossainpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, M., Hossainpour, S. & Rezazadeh, G. Studying thin film damping in a micro-beam resonator based on non-classical theories. Acta Mech. Sin. 32, 369–379 (2016). https://doi.org/10.1007/s10409-015-0482-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0482-x

Keywords

Navigation