Skip to main content
Log in

A new thermo-elasto-plasticity constitutive theory for polycrystalline metals

  • Research paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equation is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress–strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.

Graphical abstract

The new decomposition of deformation gradient offers the key basis for the establishment of the thermo-elasto-plasticity constitutive theory in this article. And the proposed model can accurately reflect the behavior of the polycrystalline metals at different temperatures with a concise and clear calculation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, S.R., Kocks, U.: High-Temperature Plasticity in Copper Polycrystals. Los Alamos National Laboratory, Los Alamos (1991)

    Google Scholar 

  2. Nemat-Nasser, S., Li, Y.: Flow stress of fcc polycrystals with application to OFHC Cu. Acta Mater. 46, 565–577 (1998)

    Article  Google Scholar 

  3. Ono, N., Nowak, R., Miura, S.: Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58, 39–43 (2004)

    Article  Google Scholar 

  4. Lennon, A., Ramesh, K.: The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J. Plast. 20, 269–290 (2004)

    Article  MATH  Google Scholar 

  5. Vagarali, S.S., Langdon, T.G.: Deformation mechanisms in hcp metals at elevated temperatures–I. Creep behavior of magnesium. Acta Metall. 29, 1969–1982 (1981)

  6. Roberts, W., Bergström, Y.: The stress–strain behaviour of single crystals and polycrystals of face-centered cubic metals—a new dislocation treatment. Acta Metall. 21, 457–469 (1973)

    Article  Google Scholar 

  7. Viguier, B., Kruml, T., Martin, J.L.: Loss of strength in Ni3Al at elevated temperatures. Philos. Mag. 86, 4009–4021 (2006)

    Article  Google Scholar 

  8. Prasad, Y.V.R.K., Rao, K.P.: Kinetics of high-temperature deformation of polycrystalline OFHC copper and the role of dislocation core diffusion. Philos. Mag. 84, 3039–3050 (2004)

    Article  Google Scholar 

  9. Taylor, G.I.: Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)

    Google Scholar 

  10. Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  MATH  Google Scholar 

  11. Roters, F., Eisenlohr, P., Hantcherli, L., et al.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  12. Raabe, D., Mao, W.: Experimental investigation and simulation of the texture evolution during rolling deformation of an intermetallic Fe-28 at.% A1–2 at.% Cr polycrystal at elevated temperatures. Philos. Mag. A 71, 805–813 (1995)

    Article  Google Scholar 

  13. Kocks, U.: The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. 1, 1121–1143 (1970)

    Google Scholar 

  14. Balasubramanian, S., Anand, L.: Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures. J. Mech. Phys. Solids 50, 101–126 (2002)

    Article  MATH  Google Scholar 

  15. Hutchinson, J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 348, 101–127 (1976)

    Article  MATH  Google Scholar 

  16. Landis, C.M., McMeeking, R.M.: A self-consistent constitutive model for switching in polycrystalline barium titanate. Ferroelectrics 255, 13–34 (2001)

    Article  Google Scholar 

  17. Wang, H., Raeisinia, B., Wu, P., et al.: Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet. Int. J. Solids Struct. 47, 2905–2917 (2010)

    Article  MATH  Google Scholar 

  18. Agnew, S.R., Duygulu, Ö.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161–1193 (2005)

    Article  MATH  Google Scholar 

  19. Askari, H., Young, J.P., Field, D.P., et al.: Prediction of flow stress and textures of AZ31 magnesium alloy at elevated temperature. Philos. Mag. 94, 3353–3367 (2014)

    Article  Google Scholar 

  20. Turner, P.A., Tomé, C.N., Christodoulou, N., et al.: A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep. Philos. Mag. A 79, 2505–2524 (1999)

    Article  Google Scholar 

  21. Beyerlein, I., Tomé, C.: A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. Plast. 24, 867–895 (2008)

    Article  MATH  Google Scholar 

  22. Bower, A.F., Wininger, E.: A two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J. Mech. Phys. Solids 52, 1289–1317 (2004)

    Article  MATH  Google Scholar 

  23. Agarwal, S., Briant, C.L., Krajewski, P.E., et al.: Experimental validation of two-dimensional finite element method for simulating constitutive response of polycrystals during high temperature plastic deformation. J. Mater. Eng. Perform. 16, 170–178 (2007)

    Article  Google Scholar 

  24. Ma, A., Roters, F.: A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater. 52, 3603–3612 (2004)

  25. Zamiri, A., Bieler, T., Pourboghrat, F.: Anisotropic crystal plasticity finite element modeling of the effect of crystal orientation and solder joint geometry on deformation after temperature change. J. Electron. Mater. 38, 231–240 (2009)

    Article  Google Scholar 

  26. Staroselsky, A., Anand, L.: A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B. Int. J. Plast. 19, 1843–1864 (2003)

    Article  MATH  Google Scholar 

  27. Johnson, G. R., Cook W. H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague (1983)

  28. Zerilli, F.J., Armstrong, R.W.: Dislocationc-mechanicsc-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)

    Article  Google Scholar 

  29. Khan, A.S., Huang, S.: Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range \(10^{- 5}- 10 ^{4}\, {\rm S}^{-1}\). Int. J. Plast. 8, 397–424 (1992)

  30. Khan, A.S., Liang, R.: Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. Int. J. Plast. 15, 1089–1109 (1999)

    Article  MATH  Google Scholar 

  31. Khan, A.S., Yu, S., Liu, H.: Deformation induced anisotropic responses of Ti–6Al–4V alloy part II: A strain rate and temperature dependent anisotropic yield criterion. Int. J. Plast. 38, 14–26 (2012)

    Article  Google Scholar 

  32. Liang, R., Khan, A.S.: A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. Plast. 15, 963–980 (1999)

    Article  MATH  Google Scholar 

  33. Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)

    Article  MATH  Google Scholar 

  34. Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1977)

    Article  MATH  Google Scholar 

  35. Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14, 95–102 (1966)

    Article  Google Scholar 

  36. Liu, X.L., Tang, Q.H., Wang, T.C.: A continuum thermal stress theory for crystals based on interatomic potentials. Sci. China Phys. Mech. Astron. 57, 1–10 (2014)

    Google Scholar 

  37. Nix, F.C., MacNair, D.: The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597–605 (1941)

    Article  Google Scholar 

  38. Tang, Q., Wang, T., Shang, B., et al. Thermodynamic properties and constitutive relations of crystals at finite temperature. Sci. China Phys. Mech. Astron. 55, 918–926 (2012)

  39. Jiang, H., Huang, Y., Hwang, K.C.: A finite-temperature continuum theory based on interatomic potentials. J. Eng. Mater. Technol. 127, 408–416 (2005)

    Article  Google Scholar 

  40. Roe, R.J.: Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion. J. Appl. Phys. 36, 2024–2031 (1965)

    Article  Google Scholar 

  41. Khan, A.S., Yu, S.: Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part I: Experiments. Int. J. Plast. 38, 1–13 (2012)

  42. Mishin, Y., Mehl, M., Papaconstantopoulos, D., et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)

  43. Barnett, M., Keshavarz, Z., Beer, A., et al.: Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 52, 5093–5103 (2004)

    Article  Google Scholar 

  44. Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004)

    Article  Google Scholar 

  45. Agnew, S.R., Brown, D.W., Tomé, C.N.: Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Mater. 54, 4841–4852 (2006)

  46. Gehrmann, R., Frommert, M.M., Gottstein, G.: Texture effects on plastic deformation of magnesium. Mater. Sci. Eng. A 395, 338–349 (2005)

    Article  Google Scholar 

  47. Yoo, M.H., Lee, J.K.: Deformation twinning in h.c.p. metals and alloys. Philos. Mag. A 63, 987–1000 (1991)

    Article  Google Scholar 

  48. Matsunaga, T., Kameyama, T., Ueda, S., et al. Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals. Philos. Mag. 90, 4041–4054 (2010)

  49. Liu, Y., Wei, Y.: A polycrystal based numerical investigation on the temperature dependence of slip resistance and texture evolution in magnesium alloy AZ31B. Int. J. Plast. 55, 80–93 (2014)

    Article  Google Scholar 

  50. Knezevic, M., McCabe, R.J., Tomé, C.N., et al.: Modeling mechanical response and texture evolution of \(\alpha \)-uranium as a function of strain rate and temperature using polycrystal plasticity. Int. J. Plast. 43, 70–84 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants 11021262, 11172303, 11132011) and National Basic Research Program of China through 2012CB937500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzuchiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Tang, Q. & Wang, T. A new thermo-elasto-plasticity constitutive theory for polycrystalline metals. Acta Mech Sin 31, 338–348 (2015). https://doi.org/10.1007/s10409-015-0462-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0462-1

Keywords

Navigation