Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 3, pp 338–348 | Cite as

A new thermo-elasto-plasticity constitutive theory for polycrystalline metals

  • Cen Chen
  • Qiheng Tang
  • Tzuchiang WangEmail author
Research paper

Abstract

In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equation is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress–strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.

Graphical abstract

The new decomposition of deformation gradient offers the key basis for the establishment of the thermo-elasto-plasticity constitutive theory in this article. And the proposed model can accurately reflect the behavior of the polycrystalline metals at different temperatures with a concise and clear calculation process.

Keywords

Thermo-elasto-plasticity constitutive theory Yield stress Hardening behaviors Finite temperature 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants 11021262, 11172303, 11132011) and National Basic Research Program of China through 2012CB937500.

References

  1. 1.
    Chen, S.R., Kocks, U.: High-Temperature Plasticity in Copper Polycrystals. Los Alamos National Laboratory, Los Alamos (1991)Google Scholar
  2. 2.
    Nemat-Nasser, S., Li, Y.: Flow stress of fcc polycrystals with application to OFHC Cu. Acta Mater. 46, 565–577 (1998)CrossRefGoogle Scholar
  3. 3.
    Ono, N., Nowak, R., Miura, S.: Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58, 39–43 (2004)CrossRefGoogle Scholar
  4. 4.
    Lennon, A., Ramesh, K.: The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J. Plast. 20, 269–290 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Vagarali, S.S., Langdon, T.G.: Deformation mechanisms in hcp metals at elevated temperatures–I. Creep behavior of magnesium. Acta Metall. 29, 1969–1982 (1981)Google Scholar
  6. 6.
    Roberts, W., Bergström, Y.: The stress–strain behaviour of single crystals and polycrystals of face-centered cubic metals—a new dislocation treatment. Acta Metall. 21, 457–469 (1973)CrossRefGoogle Scholar
  7. 7.
    Viguier, B., Kruml, T., Martin, J.L.: Loss of strength in Ni3Al at elevated temperatures. Philos. Mag. 86, 4009–4021 (2006)CrossRefGoogle Scholar
  8. 8.
    Prasad, Y.V.R.K., Rao, K.P.: Kinetics of high-temperature deformation of polycrystalline OFHC copper and the role of dislocation core diffusion. Philos. Mag. 84, 3039–3050 (2004)CrossRefGoogle Scholar
  9. 9.
    Taylor, G.I.: Plastic strain in metals. J. Inst. Met. 62, 307–324 (1938)Google Scholar
  10. 10.
    Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)zbMATHCrossRefGoogle Scholar
  11. 11.
    Roters, F., Eisenlohr, P., Hantcherli, L., et al.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRefGoogle Scholar
  12. 12.
    Raabe, D., Mao, W.: Experimental investigation and simulation of the texture evolution during rolling deformation of an intermetallic Fe-28 at.% A1–2 at.% Cr polycrystal at elevated temperatures. Philos. Mag. A 71, 805–813 (1995)CrossRefGoogle Scholar
  13. 13.
    Kocks, U.: The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. 1, 1121–1143 (1970)Google Scholar
  14. 14.
    Balasubramanian, S., Anand, L.: Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures. J. Mech. Phys. Solids 50, 101–126 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hutchinson, J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 348, 101–127 (1976)zbMATHCrossRefGoogle Scholar
  16. 16.
    Landis, C.M., McMeeking, R.M.: A self-consistent constitutive model for switching in polycrystalline barium titanate. Ferroelectrics 255, 13–34 (2001)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Raeisinia, B., Wu, P., et al.: Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet. Int. J. Solids Struct. 47, 2905–2917 (2010)zbMATHCrossRefGoogle Scholar
  18. 18.
    Agnew, S.R., Duygulu, Ö.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161–1193 (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    Askari, H., Young, J.P., Field, D.P., et al.: Prediction of flow stress and textures of AZ31 magnesium alloy at elevated temperature. Philos. Mag. 94, 3353–3367 (2014)CrossRefGoogle Scholar
  20. 20.
    Turner, P.A., Tomé, C.N., Christodoulou, N., et al.: A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep. Philos. Mag. A 79, 2505–2524 (1999)CrossRefGoogle Scholar
  21. 21.
    Beyerlein, I., Tomé, C.: A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. Plast. 24, 867–895 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Bower, A.F., Wininger, E.: A two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J. Mech. Phys. Solids 52, 1289–1317 (2004)zbMATHCrossRefGoogle Scholar
  23. 23.
    Agarwal, S., Briant, C.L., Krajewski, P.E., et al.: Experimental validation of two-dimensional finite element method for simulating constitutive response of polycrystals during high temperature plastic deformation. J. Mater. Eng. Perform. 16, 170–178 (2007)CrossRefGoogle Scholar
  24. 24.
    Ma, A., Roters, F.: A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater. 52, 3603–3612 (2004)Google Scholar
  25. 25.
    Zamiri, A., Bieler, T., Pourboghrat, F.: Anisotropic crystal plasticity finite element modeling of the effect of crystal orientation and solder joint geometry on deformation after temperature change. J. Electron. Mater. 38, 231–240 (2009)CrossRefGoogle Scholar
  26. 26.
    Staroselsky, A., Anand, L.: A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B. Int. J. Plast. 19, 1843–1864 (2003)zbMATHCrossRefGoogle Scholar
  27. 27.
    Johnson, G. R., Cook W. H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague (1983)Google Scholar
  28. 28.
    Zerilli, F.J., Armstrong, R.W.: Dislocationc-mechanicsc-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61, 1816–1825 (1987)CrossRefGoogle Scholar
  29. 29.
    Khan, A.S., Huang, S.: Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range \(10^{- 5}- 10 ^{4}\, {\rm S}^{-1}\). Int. J. Plast. 8, 397–424 (1992)Google Scholar
  30. 30.
    Khan, A.S., Liang, R.: Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. Int. J. Plast. 15, 1089–1109 (1999)zbMATHCrossRefGoogle Scholar
  31. 31.
    Khan, A.S., Yu, S., Liu, H.: Deformation induced anisotropic responses of Ti–6Al–4V alloy part II: A strain rate and temperature dependent anisotropic yield criterion. Int. J. Plast. 38, 14–26 (2012)CrossRefGoogle Scholar
  32. 32.
    Liang, R., Khan, A.S.: A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int. J. Plast. 15, 963–980 (1999)zbMATHCrossRefGoogle Scholar
  33. 33.
    Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)zbMATHCrossRefGoogle Scholar
  34. 34.
    Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1977)zbMATHCrossRefGoogle Scholar
  35. 35.
    Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14, 95–102 (1966)CrossRefGoogle Scholar
  36. 36.
    Liu, X.L., Tang, Q.H., Wang, T.C.: A continuum thermal stress theory for crystals based on interatomic potentials. Sci. China Phys. Mech. Astron. 57, 1–10 (2014)Google Scholar
  37. 37.
    Nix, F.C., MacNair, D.: The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597–605 (1941)CrossRefGoogle Scholar
  38. 38.
    Tang, Q., Wang, T., Shang, B., et al. Thermodynamic properties and constitutive relations of crystals at finite temperature. Sci. China Phys. Mech. Astron. 55, 918–926 (2012)Google Scholar
  39. 39.
    Jiang, H., Huang, Y., Hwang, K.C.: A finite-temperature continuum theory based on interatomic potentials. J. Eng. Mater. Technol. 127, 408–416 (2005)CrossRefGoogle Scholar
  40. 40.
    Roe, R.J.: Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion. J. Appl. Phys. 36, 2024–2031 (1965)CrossRefGoogle Scholar
  41. 41.
    Khan, A.S., Yu, S.: Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part I: Experiments. Int. J. Plast. 38, 1–13 (2012)Google Scholar
  42. 42.
    Mishin, Y., Mehl, M., Papaconstantopoulos, D., et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)Google Scholar
  43. 43.
    Barnett, M., Keshavarz, Z., Beer, A., et al.: Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 52, 5093–5103 (2004)CrossRefGoogle Scholar
  44. 44.
    Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004)CrossRefGoogle Scholar
  45. 45.
    Agnew, S.R., Brown, D.W., Tomé, C.N.: Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Mater. 54, 4841–4852 (2006)Google Scholar
  46. 46.
    Gehrmann, R., Frommert, M.M., Gottstein, G.: Texture effects on plastic deformation of magnesium. Mater. Sci. Eng. A 395, 338–349 (2005)CrossRefGoogle Scholar
  47. 47.
    Yoo, M.H., Lee, J.K.: Deformation twinning in h.c.p. metals and alloys. Philos. Mag. A 63, 987–1000 (1991)CrossRefGoogle Scholar
  48. 48.
    Matsunaga, T., Kameyama, T., Ueda, S., et al. Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals. Philos. Mag. 90, 4041–4054 (2010)Google Scholar
  49. 49.
    Liu, Y., Wei, Y.: A polycrystal based numerical investigation on the temperature dependence of slip resistance and texture evolution in magnesium alloy AZ31B. Int. J. Plast. 55, 80–93 (2014)CrossRefGoogle Scholar
  50. 50.
    Knezevic, M., McCabe, R.J., Tomé, C.N., et al.: Modeling mechanical response and texture evolution of \(\alpha \)-uranium as a function of strain rate and temperature using polycrystal plasticity. Int. J. Plast. 43, 70–84 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations