Skip to main content
Log in

Nanoindentation of soft solids by a flat punch

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Measuring the surface tension and elastic modulus of soft materials and biological tissues under different physiological and pathological conditions is of significance for understanding various phenomena associated with deformation. In this paper, the nanoindentation of a circular flat punch on a soft solid is analyzed with the influence of surface tension. By solving the corresponding singular integral equation, the relation between load and indent depth is obtained. When the radius of the flat punch shrinks to the same order as the ratio of surface tension to elastic modulus, surface tension significantly affects the indentation load–depth relation, which provides a facile method to measure surface tension in soft solids and biological tissues.

Graphical Abstract

The nanoindentation of a circular flat punch on a soft solid is analyzed with the influence of surface tension. By solving the corresponding singular integral equation, the relation between load and indent depth is obtained. When the radius of a flat punch shrinks to the same order as the ratio of surface tension to elastic modulus, surface tension significantly affects the indentation load–depth relation, which provides a facile method to measure surface tension in soft solids and biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shenoy, V., Sharma, A.: Pattern formation in a thin solid film with interactions. Phys. Rev. Lett. 86, 119–122 (2001)

    Article  Google Scholar 

  2. Li, B., Cao, Y.P., Feng, X.Q., et al.: Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011)

    Article  Google Scholar 

  3. Majumder, A., Ghatak, A., Sharma, A.: Micro fluidic adhesion induced by subsurface microstructures. Science 318, 258–261 (2007)

    Article  Google Scholar 

  4. Nadermanna, N., Hui, C.Y., Jagota, A.: A. Solid surface tension measured by a liquid drop under a solid film. Proc. Natl Acad. Sci. 110, 10541 (2013)

    Article  Google Scholar 

  5. Style, R.W., Boltyanskiy, R., Che, Y., et al.: Universal deformation of soft substrates near a contact line and the direct measurement of solid surface tension. Phys. Rev. Lett. 110, 066103 (2013)

    Article  Google Scholar 

  6. Jagota, A., Paretkar, D., Ghatak, A.: Surface-tension-induced flattening of a nearly plane elastic solids. Phys. Rev. E 85, 051602 (2012)

  7. Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., et al.: Interpretations of indentation size effects. J. Appl. Mech. 69, 433–442 (2002)

    Article  Google Scholar 

  8. Johnson, K.L.: Contact Mechanics. Cambridge Univercsity Press, London (1985)

    Book  MATH  Google Scholar 

  9. Ma, Q., Clarke, D.: Size-dependent hardness of silver single-crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  MATH  Google Scholar 

  10. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  11. Hajji, M.A.: Indentation of a membrane on an elastic half space. J. Appl. Mech. 45, 320–324 (1978)

    Article  Google Scholar 

  12. Gurtin, M.E., Murdoch, A.I.: Continuum theory of elastic-material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  13. Gurtin, M.E., Weissmuller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  14. Huang, G.Y., Yu, S.W.: Effect of surface elasticity on the interaction between steps. J. Appl. Mech. 74, 821–823 (2007)

    Article  Google Scholar 

  15. Wang, G.F., Feng, X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)

    Article  Google Scholar 

  16. Chen, W.Q., Zhang, Ch.: Anti-plane shear Green’s functions for an isotropic elastic half-space with a material surface. Int. J. Solids Struct. 47, 1641–1650 (2010)

    Article  Google Scholar 

  17. Long, J.M., Wang, G.F.: Effects of surface tension on axisymmetric Hertzian contact problem. Mech. Mater. 56, 65–70 (2013)

    Article  Google Scholar 

  18. Gao, X., Hao, F., Fang, D.N., et al.: Mechanics of adhesive contact at the nanoscale: The effect of surface stress. Int. J. Solids Struct. 51, 566–574 (2013)

    Article  MATH  Google Scholar 

  19. Chen, T.Y., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  20. Cammarata, R.C.: Surface and interface stress effects in thin-films. Prog. Surf. Sci. 46, 1–84 (1994)

  21. Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Lond. Sect. A 63, 444–457 (1950)

    Article  Google Scholar 

  22. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  23. Erdogan, F., Gupta, G.D.: Numerical solution of singular integral equations. Q. Appl. Math. 29, 525–529 (1972)

    MathSciNet  Google Scholar 

  24. Zhang, M.G., Cao, Y.P., Li, G.Y., et al.: Pipette aspiration of hyperelastic compliant materials: Theoretical analysis, simulations and experiments. J. Mech. Phys. Solids 68, 179–196 (2014)

    Article  Google Scholar 

  25. Xu, X., Jagota, A., Hui, C.Y.: Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. Soft Matter 10, 4625–4632 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grant 11272249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G.F., Niu, X.R. Nanoindentation of soft solids by a flat punch. Acta Mech. Sin. 31, 531–535 (2015). https://doi.org/10.1007/s10409-015-0440-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0440-7

Keywords

Navigation