Skip to main content
Log in

Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes. To this end, the nanoscale pipe is modeled as a Timoshenko nanobeam. The equations of motion of the nanoscale pipe are obtained based on Hamilton’s principle and the Gurtin–Murdoch continuum elasticity incorporating the surface stress effect. Afterwards, the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions. To what extent important parameters such as the thickness, material and surface stress modulus, residual surface stress, surface density, and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Che, G., Lakshmi, B.B., Fisher, E.R., et al.: Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998)

  2. Liu, J., Rinzler, A.G., Dai, H., et al.: Fullerene pipes. Science 280, 1253–1256 (1998)

  3. Ansari, R., Gholami, R., Darabi, M.: Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Therm. Stress. 34, 1271–1281 (2011)

    Article  Google Scholar 

  4. Ansari, R., Gholami, R., Darabi, M.: Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions. Acta Mechanica 223, 2523–2536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Georgantzinos, S.K., Anifantis, N.K.: Carbon nanotube-based resonant nanomechanical sensors: A computational investigation of their behavior. Physica E Low-dimens. Syst. Nanostruct. 42, 1795–1801 (2010)

    Article  Google Scholar 

  6. Kleshch, V.I., Obraztsov, A.N., Obraztsova, E.D.: Electromechanical self-oscillations of carbon nanotube field emitter. Carbon 48, 3895–3900 (2010)

    Article  Google Scholar 

  7. Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    Article  Google Scholar 

  8. Gao, Y., Bando, Y.: Nanotechnology: carbon nanothermometer containing gallium. Nature 415, 599–599 (2002)

    Article  Google Scholar 

  9. Adali, S.: Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler–Bernoulli beam model. Nano Lett. 9, 1737–1741 (2009)

    Article  Google Scholar 

  10. Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. Biol. Med. 4, 183–200 (2008)

    Article  Google Scholar 

  11. Rashidi, V., Mirdamadi, H.R., Shirani, E.: A novel model for vibrations of nanotubes conveying nanoflow. Computat. Mater. Sci. 51, 347–352 (2012)

    Article  Google Scholar 

  12. Yoon, J., Ru, C.Q., Mioduchowski, A.: Flow-induced flutter instability of cantilever carbon nanotubes. Int. J. Solids Struct. 43, 3337–3349 (2006)

    Article  MATH  Google Scholar 

  13. Khosravian, N., Rafii-Tabar, H.: Computational modelling of the flow of viscous fluids in carbon nanotubes. J. Phys. D Appl. Phys. 40, 7046 (2007)

    Article  Google Scholar 

  14. Khosravian, N., Rafii-Tabar, H.: Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Nanotechnology 19, 275703 (2008)

    Article  Google Scholar 

  15. Reddy, C.D., Lu, C., Rajendran, S., et al.: Free vibration analysis of fluid-conveying single-walled carbon nanotubes. Appl. Phys. Lett. 90, 133122 (2007)

  16. Wang, L., Ni, Q., Li, M., et al.: The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E Low-dimens. Syst. Nanostruct. 40, 3179–3182 (2008)

  17. Rasekh, M., Khadem, S.E.: Nonlinear vibration and stability analysis of axially loaded embedded carbon nanotubes conveying fluid. J. Phys. D Appl. Phys. 42, 135112 (2009)

    Article  Google Scholar 

  18. Xia, W., Wang, L.: Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape. Computat. Mater. Sci. 49, 99–103 (2010)

    Article  Google Scholar 

  19. Ni, Q., Zhang, Z.L., Wang, L.: Application of the differential transformation method to vibration analysis of pipes conveying fluid. Appl. Math. Computat. 217, 7028–7038 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghavanloo, E., Rafiei, M., Daneshmand, F.: In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium. Phys. Lett. A 375, 1994–1999 (2011)

    Article  Google Scholar 

  21. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lam, D.C.C., Yang, F., Chong, A.C.M., et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

  24. Ansari, R., Faghih Shojaei, M., Gholami, R., et al.: Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams. Int. J. Non-Linear Mech. 50, 127–135 (2013)

  25. Ansari, R., Faghih Shojaei, M., Mohammadi, V., et al.: Buckling and postbuckling behavior of functionally graded Timoshenko microbeams based on the strain gradient theory. J. Mech. Mater. Struct. 7, 931–949 (2013)

  26. Ansari, R., Gholami, R., Darabi, M.A.: A nonlinear Timoshenko beam formulation based on strain gradient theory. J. Mech. Mater. Struct. 7, 195–211 (2012)

    Article  Google Scholar 

  27. Ansari, R., Gholami, R., Shojaei, M.F., et al.: Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports. J. Eng. Mater. Technol. 134, 041013 (2012)

  28. Farokhi, H., Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int. J. Eng. Sci. 68, 11–23 (2013)

    Article  MathSciNet  Google Scholar 

  29. Wang, L.: Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Physica E Low-dimens. Syst. Nanostruct. 41, 1835–1840 (2009)

    Article  Google Scholar 

  30. Rafiei, M., Mohebpour, S.R., Daneshmand, F.: Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E Low-dimens. Syst. Nanostruct. 44, 1372–1379 (2012)

    Article  Google Scholar 

  31. Ali-Asgari, M., Mirdamadi, H.R., Ghayour, M.: Coupled effects of nano-size, stretching, and slip boundary conditions on nonlinear vibrations of nano-tube conveying fluid by the homotopy analysis method. Physica E Low-dimens. Syst. Nanostruct. 52, 77–85 (2013)

    Article  Google Scholar 

  32. Ghasemi, A., Dardel, M., Ghasemi, M.H., et al.: Analytical analysis of buckling and post-buckling of fluid conveying multi-walled carbon nanotubes. Appl. Math. Model. 37, 4972–4992 (2013)

  33. Khodami Maraghi, Z., Ghorbanpour Arani, A., Kolahchi, R., et al.: Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos. B Eng. 45, 423–432 (2013)

  34. Abdollahian, M., Ghorbanpour Arani, A., Mosallaie Barzoki, A.A., et al.: Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM. Physica B Condens. Matter 418, 1–15 (2013)

  35. Ghorbanpour Arani, A., Kolahchi, R., Vossough, H.: Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory. Physica B Condens. Matter 407, 4281–4286 (2012)

  36. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  37. Wang, G.F., Feng, X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)

    Article  Google Scholar 

  38. Gurtin, M., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gurtin, M.E., Ian Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  40. Fried, E., Gurtin, M.E.: The role of the configurational force balance in the nonequilibrium epitaxy of films. J. Mech. Phys. Solids 51, 487–517 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, G.-F., Feng, X.-Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

  42. Wang, Z.-Q., Zhao, Y.-P., Huang, Z.-P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  43. Wang, L.: Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Physica E Low-dimens. Syst. Nanostruct. 43, 437–439 (2010)

    Article  Google Scholar 

  44. Wang, L., Ni, Q.: A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid. Mech. Res. Commun. 36, 833–837 (2009)

  45. Mirramezani, M., Mirdamadi, H.R.: The effects of Knudsen-dependent flow velocity on vibrations of a nano-pipe conveying fluid. Arch. Appl. Mech. 82, 879–890 (2011)

    Article  MATH  Google Scholar 

  46. Mirramezani, M., Mirdamadi, H.R., Ghayour, M.: Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure. Computat. Mater. Sci. 77, 161–171 (2013)

    Article  Google Scholar 

  47. Lu, P., He, L.H., Lee, H.P., et al.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

  48. Zhu, R., Pan, E., Chung, P.W., et al.: Atomistic calculation of elastic moduli in strained silicon. Semiconduct. Sci. Technol. 21, 906 (2006)

  49. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)

    Article  Google Scholar 

  50. Ansari, R., Hosseini, K., Darvizeh, A., et al.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Computat. 219, 4977–4991 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or R. Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Gholami, R., Norouzzadeh, A. et al. Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mech. Sin. 31, 708–719 (2015). https://doi.org/10.1007/s10409-015-0435-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0435-4

Keywords

Navigation