Acta Mechanica Sinica

, Volume 31, Issue 3, pp 373–382 | Cite as

Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching

  • David J. SteigmannEmail author
  • Francesco dell’Isola
Research Paper


A model for the mechanics of woven fabrics is developed in the framework of two-dimensional elastic surface theory. Thickness effects are modeled indirectly in terms of appropriate constitutive equations. The model accounts for the strain of the fabric and additional effects associated with the normal bending, geodesic bending, and twisting of the constituent fibers.


Woven fabrics Elastic surface theory  Strain gradients 



David J. Steigmann gratefully acknowledges his appointment as a Visiting Research Professor at the Università di Roma ‘La Sapienza’ during the course of this research. He is also grateful for support provided by the Powley Fund for Ballistics Research.


  1. 1.
    Warren, W.E.: The elastic properties of woven polymeric fabric. Polym. Eng. Sci. 30, 1309–1313 (1990)CrossRefGoogle Scholar
  2. 2.
    Wang, W.-B., Pipkin, A.C.: Inextensible networks with bending stiffness. Q. J. Mech. Appl. Math. 39, 343–359 (1986)zbMATHCrossRefGoogle Scholar
  3. 3.
    Wang, W.-B., Pipkin, A.C.: Plane deformations of nets with bending stiffness. Acta Mech. 65, 263–279 (1986)CrossRefGoogle Scholar
  4. 4.
    Pipkin, A.C.: Some developments in the theory of inextensible networks. Q. Appl. Math. 38, 343 (1980)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Pipkin, A.C.: Plane traction problems for inextensible networks. Q. J. Mech. Appl. Math. 34, 415 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Pipkin, A.C.: Equilibrium of Tchebychev nets. Arch. Ration. Mech. Anal. 85, 81 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Luo, C., Steigmann, D.J.: Bending and twisting effects in the three-dimensional finite deformations of an inextensible network. In: Durban, D., et al. (eds.) Developments in Shell Theory Technion volume to commemorate the 70th birthday of A. Libai. Advances in the Mechanics of Plates and Shells, pp. 213–228. Kluwer Academic Publishers, London (2001)Google Scholar
  8. 8.
    Luo, C.: Nonlinear three-dimensional mechanics of fabrics. Dissertation, UC Berkeley (2000)Google Scholar
  9. 9.
    Indelicato, G.: The influence of the twist of individual fibers in 2D fibered networks. Int. J. Solids Struct. 46, 912–922 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Phil. Trans. R. Soc. Lond. A335, 419–454 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Steigmann, D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-linear Mech. 47, 734–742 (2012)Google Scholar
  13. 13.
    Steigmann, D.J.: Effects of fiber bending and twisting resistance on the mechanics of fiber-reinforced elastomers. In: Dorfmann, L., Ogden, R.W. (eds.) CISM Course on Nonlinear Mechanics of Soft Fibrous Tissues. Springer, Wien and New York (in press)Google Scholar
  14. 14.
    Ciarlet, P.G.: An introduction to differential geometry with applications to elasticity. J. Elast. 78–79, 3–201 (2005)MathSciNetGoogle Scholar
  15. 15.
    Lovelock, D., Rund, H.: Tensors, Differ. Forms Var. Princ. Dover, New York (1989)Google Scholar
  16. 16.
    Coleman, B.D.: Necking and drawing in polymeric fibers under tension. Arch. Ration. Mech. Anal. 83, 115–137 (1983)zbMATHCrossRefGoogle Scholar
  17. 17.
    Coleman, B.D., Newman, D.C.: On the rheology of cold drawing: I. elastic materials. J. Polym. Sci. B: Polym. Phys. 26, 1801–1822 (1988)CrossRefGoogle Scholar
  18. 18.
    dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118, 113–125 (2015)Google Scholar
  19. 19.
    Spencer, A.J.M., Soldatos, K.P.: Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non-Linear Mech. 42, 355–368 (2007)CrossRefGoogle Scholar
  20. 20.
    Murdoch, A.I., Cohen, H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72, 61–98 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Indelicato, G., Albano, A.: Symmetry properties of the elastic energy of a woven fabric with bending and twisting resistance. J. Elast. 94, 33–54 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hilgers, M.G., Pipkin, A.C.: The Graves condition for variational problems of arbitrary order. IMA. J. Appl. Math. 48, 265–269 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Steigmann, D.J., Ogden, R.W.: Elastic surface–substrate interactions. Proc. R. Soc. Lond. A455, 437–474 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Toupin, R.A.: Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. Knononklijke Nederl. Akad. van Wetensch. B67, 17–44 (1964)Google Scholar
  28. 28.
    Germain, P.: The method of virtual power in continuum mechanics, part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    dell’Isola, F., Seppecher, P., Madeo, A.: Beyond Euler-Cauchy Continua: The structure of contact actions in N-th gradient generalized continua: A generalization of the Cauchy tetrahedron argument. Variational Models and Methods in Solid and Fluid Mechanics CISM Courses and Lectures, vol. 535, 17–106 (2012)Google Scholar
  30. 30.
    dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: Approach “à la D’Alembert”. Z. Angew. Math. Phys. 63, 1119–1141 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z. Angew. Math. Phys. 65, 587–612 (2013)Google Scholar
  32. 32.
    Cusick, G.E.: The response of fabric to shearing forces. J. Text. Inst. 52, T395–T406 (1961)CrossRefGoogle Scholar
  33. 33.
    Cao, J., Akkerman, R., Boisse, P., et al. Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. Part A: Appl. Sci. Manuf. 39, 1037–1053 (2008)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.International Research Center for Mathematics and Mechanics of Complex SystemsUniversità dell’AquilaCisterna di LatinaItaly
  3. 3.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità di Roma ‘La Sapienza’RomeItaly

Personalised recommendations