Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 2, pp 268–273 | Cite as

Cell biomechanics and its applications in human disease diagnosis

  • Yasaman Nematbakhsh
  • Chwee Teck LimEmail author
Review Paper

Abstract

Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.

Keywords

Biophysical properties Cancer Malaria  Cell enrichment  Phenotyping Diagnostic tool Mechanopathology Cell separation and capture 

References

  1. 1.
    Lee, G.Y., Lim, C.T.: Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111–118 (2007)CrossRefGoogle Scholar
  2. 2.
    Di Carlo, D.: A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17, 32–42 (2012)CrossRefGoogle Scholar
  3. 3.
    Park, S., Ang, R.R., Duffy, S.P., et al.: Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells. PLoS One 9, e85264 (2014)CrossRefGoogle Scholar
  4. 4.
    Dey, P.: Cancer nucleus: morphology and beyond. Diagn. Cytopathol. 38, 382–390 (2010)Google Scholar
  5. 5.
    Debes, J.D., Sebo, T.J., Heemers, H.V., et al.: p300 modulates nuclear morphology in prostate cancer. Cancer Res. 65, 708–712 (2005)CrossRefGoogle Scholar
  6. 6.
    Li, A., Mansoor, A.H., Tan, K.S., et al.: Observations on the internal and surface morphology of malaria infected blood cells using optical and atomic force microscopy. J. Microbiol. Methods 66, 434–439 (2006)CrossRefGoogle Scholar
  7. 7.
    Hosseini, S.M., Feng, J.J.: How malaria parasites reduce the deformability of infected red blood cells. Biophys. J. 103, 1–10 (2012)CrossRefGoogle Scholar
  8. 8.
    Suresh, S.: Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J. Mater. Res. 21, 1871–1877 (2011)CrossRefGoogle Scholar
  9. 9.
    Evans, E., Fung, Y.C.: Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 13 (1971)Google Scholar
  10. 10.
    Marti, M., Baum, J., Rug, M., et al.: Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J. Cell Biol. 171, 587–592 (2005)CrossRefGoogle Scholar
  11. 11.
    Ye, T., Phan-Thien, N., Khoo, B.C., et al.: Stretching and relaxation of malaria-infected red blood cells. Biophys. J. 105, 1103–1109 (2013)CrossRefGoogle Scholar
  12. 12.
    Karimi, A., Yazdi, S., Ardekani, A.M.: Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7, 21501 (2013)CrossRefGoogle Scholar
  13. 13.
    Diez-Silva, M., Dao, M., Han, J., et al.: Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35, 7 (2010)CrossRefGoogle Scholar
  14. 14.
    Pongponratn, E., Turner, G.D.H., Day, N.P.J., et al.: An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am. Soc. Trop. Med. Hyg. 69, 15 (2003)Google Scholar
  15. 15.
    Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Prabhune, M., Belge, G., Dotzauer, A., et al.: Comparison of mechanical properties of normal and malignant thyroid cells. Micron 43, 1267–1272 (2012)CrossRefGoogle Scholar
  17. 17.
    Xu, W., Mezencev, R., Kim, B., et al.: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7, e46609 (2012)CrossRefGoogle Scholar
  18. 18.
    Li, Q.S., Lee, G.Y., Ong, C.N., et al.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613 (2008)CrossRefGoogle Scholar
  19. 19.
    Hou, H.W., Li, Q.S., Lee, G.Y., et al.: Deformability study of breast cancer cells using microfluidics. Biomed. Microdevices 11, 557–564 (2009)CrossRefGoogle Scholar
  20. 20.
    Swaminathan, V., Mythreye, K., O’Brien, E.T., et al.: Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011)CrossRefGoogle Scholar
  21. 21.
    Lekka, M., Gil, D., Pogoda, K., et al.: Cancer cell detection in tissue sections using AFM. Arch. Biochem. Biophys. 518, 151–156 (2012)CrossRefGoogle Scholar
  22. 22.
    Lee, M.H., Wu, P.H., Staunton, J.R., et al.: Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys. J. 102, 2731–2741 (2012)CrossRefGoogle Scholar
  23. 23.
    Faria, E.C., Ma, N., Gazi, E., et al.: Measurement of elastic properties of prostate cancer cells using AFM. Analyst 133, 1498–1500 (2008)CrossRefGoogle Scholar
  24. 24.
    Lekka, M., Pogoda, K., Gostek, J., et al.: Cancer cell recognition-mechanical phenotype. Micron 43, 1259–1266 (2012)CrossRefGoogle Scholar
  25. 25.
    Guz, N., Dokukin, M., Kalaparthi, V., et al.: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575 (2014)CrossRefGoogle Scholar
  26. 26.
    Guo, Q., Reiling, S.J., Rohrbach, P., et al.: Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab Chip 12, 1143–1150 (2012)CrossRefGoogle Scholar
  27. 27.
    Aingaran, M., Zhang, R., Law, S.K., et al.: Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell Microbiol. 14, 983–993 (2012)CrossRefGoogle Scholar
  28. 28.
    Lim, C.T., Li, A.: Mechanopathology of red blood cell diseases—why mechanics matters. Theor. Appl. Mech. Lett. 1, 5 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhou, E.H., Lim, C.T., Tan, K.S., et al.: Investigating the progression of disease state of malariainfected red blood cells using micropipette aspiration. In: Proceedings of the Second World Congress for Chinese Biomedical Engineers, Beijing (2004)Google Scholar
  30. 30.
    Lim, C.T., Zhou, E.H., Quek, S.T.: Mechanical models for living cells—a review. J. Biomech. 39, 195–216 (2006)CrossRefGoogle Scholar
  31. 31.
    Suresh, S., Spatz, J., Mills, J.P., et al.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)CrossRefGoogle Scholar
  32. 32.
    Shelby, J.P., White, J., Ganesan, K., et al.: A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 100, 14618–14622 (2003)CrossRefGoogle Scholar
  33. 33.
    Guo, Q., Duffy, S.P., Matthews, K., et al.: Microfluidic analysis of red blood cell deformability. J. Biomech. 47, 1767–1776 (2014)CrossRefGoogle Scholar
  34. 34.
    Huang, S., Undisz, A., Diez-Silva, M., et al.: Dynamic deformability of Plasmodium falciparum-infected erythrocytes exposed to artesunate in vitro. Integr. Biol. (Camb.) 5, 414–422 (2013)CrossRefGoogle Scholar
  35. 35.
    Huang, S., Amaladoss, A., Liu, M., et al.: In vivo splenic clearance correlates with in vitro deformability of red blood cells from Plasmodium yoelii-infected mice. Infect. Immun. 82, 2532–2541 (2014)CrossRefGoogle Scholar
  36. 36.
    Kiessling, T.R., Herrera, M., Nnetu, K.D., et al.: Analysis of multiple physical parameters for mechanical phenotyping of living cells. Eur. Biophys. J. 42, 383–394 (2013)CrossRefGoogle Scholar
  37. 37.
    Remmerbach, T.W., Wottawah, F., Dietrich, J., et al.: Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009)CrossRefGoogle Scholar
  38. 38.
    Dudani, J.S., Gossett, D.R., Tse, H.T., et al.: Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13, 3728–3734 (2013)CrossRefGoogle Scholar
  39. 39.
    Gossett, D.R., Tse, H.T., Lee, S.A., et al.: Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109, 7630–7635 (2012)CrossRefGoogle Scholar
  40. 40.
    Mauritz, J.M., Tiffert, T., Seear, R., et al.: Detection of Plasmodium falciparum-infected red blood cells by optical stretching. J. Biomed. Opt. 15, 030517 (2010)CrossRefGoogle Scholar
  41. 41.
    Bow, H., Pivkin, I.V., Diez-Silva, M., et al.: A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11, 1065–1073 (2011)CrossRefGoogle Scholar
  42. 42.
    Thalgott, M., Rack, B., Maurer, T., et al.: Detection of circulating tumor cells in different stages of prostate cancer. J. Cancer. Res. Clin. Oncol. 139, 755–763 (2013)CrossRefGoogle Scholar
  43. 43.
    Wendel, M., Bazhenova, L., Boshuizen, R., et al.: Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys. Biol. 9, 016005 (2012)CrossRefGoogle Scholar
  44. 44.
    Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R., et al.: Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11, 912–920 (2011)CrossRefGoogle Scholar
  45. 45.
    Lin, B.K., McFaul, S.M., Jin, C., et al.: Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator. Biomicrofluidics 7, 34114 (2013)CrossRefGoogle Scholar
  46. 46.
    Tan, S.J., Yobas, L., Lee, G.Y., et al.: Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11, 883–892 (2009)CrossRefGoogle Scholar
  47. 47.
    Wang, G., Mao, W., Byler, R., et al.: Stiffness dependent separation of cells in a microfluidic device. PLoS One 8, e75901 (2013)CrossRefGoogle Scholar
  48. 48.
    Hou, H.W., Bhagat, A.A., Chong, A.G., et al.: Deformability based cell margination-a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10, 2605–2613 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.NUS Graduate School for Integrative Sciences and EngineeringSingaporeSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Mechanobiology InstituteNational University of SingaporeSingaporeSingapore

Personalised recommendations