Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 2, pp 173–180 | Cite as

Identification of the elastic stiffness of composites using the virtual fields method and digital image correlation

  • Lebin Jiang
  • Baoqiao Guo
  • Huimin XieEmail author
Research Paper

Abstract

This paper presents an effective methodology for characterizing the mechanical parameters of composites using digital image correlation combined with the virtual fields method. By using a three-point bending test configuration, this method can identify all mechanical parameters of the material with merely a single test. Successful results verified that this method is especially effective for characterizing composite materials. In this study, the method is applied to measure the orthotropic elastic parameters of fiber-reinforced polymer–matrix composites before and after the hygrothermal aging process. The results indicate that the hygrothermal aging environment significantly influences the mechanical property of a composite. The components of the parameters in the direction of the fiber bundle decreased significantly. From the accuracy analysis, we found that the actual measurement accuracy is sensitive to a shift of the horizontal edges and rotation of the vertical edges.

Keywords

DIC VFM Characterization Composite 

Notes

Acknowledgments

The project was supported by the National Basic Research Program of China (“973” Project) (2010CB631005 and 2011CB606105), the National Natural Science Foundation of China (11232008, 91216301, 11227801, and 11172151) and the Tsinghua University Initiative Scientific Research Program.

References

  1. 1.
    Sutton, M., Orteu, J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Dordrecht (2009)Google Scholar
  2. 2.
    Pan, B., Qian, K., Xie, H., et al.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20, 062001 (2009)CrossRefGoogle Scholar
  3. 3.
    Kozicki, J., Tejchman, J.: Application of DIC technique to concrete—study on objectivity of measured surface displacements. Exp. Mech. 53, 1545–1559 (2013)CrossRefGoogle Scholar
  4. 4.
    Verbruggen, S., Aggelis, D.G., Tysmans, T., et al.: Bending of beams externally reinforced with TRC and CFRP monitored by DIC and AE. Compos. Struct. 112, 113–121 (2014)CrossRefGoogle Scholar
  5. 5.
    Feissel, P., Schneider, J., Aboura, Z., et al.: Use of diffuse approximation on DIC for early damage detection in 3D carbon/epoxy composites. Compos. Sci. Technol. 88, 16–25 (2013)CrossRefGoogle Scholar
  6. 6.
    Piekarczuk, A., Malesa, M., Kujawinska, M., et al.: Application of hybrid FEM-DIC method for assessment of low cost building structures. Exp. Mech. 52, 1297–1311 (2012)CrossRefGoogle Scholar
  7. 7.
    Zhu, J.G., Xie, H.M., Li, Y.J., et al.: Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method. Exp. Mech. 54, 127–136 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, L., Gong, M., Chui, Y.H., et al.: Measurement of the elastic parameters of densified balsam fir wood in the radial-tangential plane using a digital image correlation (DIC) method. J. Mater. Sci. 48, 7728–7735 (2013)CrossRefGoogle Scholar
  9. 9.
    Mathieu, F., Hild, F., Roux, S.: Identification of a crack propagation law by digital image correlation. Int. J. Fatigue 36, 146–154 (2012)CrossRefGoogle Scholar
  10. 10.
    Cooreman, S., Lecompte, D., Sol, H., et al.: Identification of mechanical material behavior through inverse modeling and DIC. Exp. Mech. 48, 421–433 (2008)CrossRefGoogle Scholar
  11. 11.
    Fedele, R., Raka, B., Hild, F., et al.: Identification of adhesive properties in GLARE assemblies using digital image correlation. J. Mech. Phys. Solids 57, 1003–1016 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Avril, S., Bonnet, M., Bretelle, S., et al.: Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48, 381–402 (2008)Google Scholar
  13. 13.
    Grédiac, M., Pierron, F., Avril, S., et al.: The virtual fields method for extracting constitutive parameters from full-field measurements: A review. Strain 42, 233–253 (2006)CrossRefGoogle Scholar
  14. 14.
    Surrel, Y.: Moiré and grid methods: a signal-processing approach. In: Proceedings of International Conference on Interferometry’94, pp. 118–127. International Society for Optics and Photonics (1994)Google Scholar
  15. 15.
    Grédiac, M., Toussaint, E., Pierron, F.: Special virtual fields for the direct determination of material parameters with the virtual fields method. 1-Principle and definition. Int. J. Solids Struct. 39, 2691–2705 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Grédiac, M., Toussaint, E., Pierron, F.: Special virtual fields for the direct determination of material parameters with the virtual fields method. 2: Application to in-plane properties. Int. J. Solids Struct. 39, 2707–2730 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Grédiac, M., Toussaint, E., Pierron, F.: Special virtual fields for the direct determination of material parameters with the virtual fields method. 3: Application to the bending rigidities of anisotropic plates. Int. J. Solids Struct. 40, 2401–2419 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Toussaint, E., Grédiac, M., Pierron, F.: The virtual fields method with piecewise virtual fields. Int. J. Mech. Sci. 48, 256–264 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Grédiac, M., Pierron, F.: Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int. J. Plast. 22, 602–627 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Guélon, T., Toussaint, E., Le Cam, J.B., et al.: A new characterisation method for rubber. Polym. Test. 28, 715–723 (2009)CrossRefGoogle Scholar
  21. 21.
    Ma, Y., Yao, X., Liu, X., et al.: Inversion and decoupling of thermo-mechanical deformation in anisotropic materials using the virtual fields method. Proc. R. Soc. A. 469, 2154 (2013)CrossRefGoogle Scholar
  22. 22.
    Grédiac, M., Pierron, F.: Numerical issues in the virtual fields method. Int. J. Numer. Methods Eng. 59, 1287–1312 (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Avril, S., Grédiac, M., Pierron, F.: Sensitivity of the virtual fields method to noisy data. Comput. Mech. 34, 439–452 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, P., Pierron, F., Thomsen, T.: Identification of material parameters of PVC foams using digital image correlation and the virtual fields method. Exp. Mech. 53, 1001–1015 (2013)CrossRefGoogle Scholar
  25. 25.
    Grédiac, M., Pierron, F., Toussaint, E., et al.: CamFit, the virtual fields method software. http://www.camfit.fr/downloads.php
  26. 26.
    Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements. Springer, Berlin (2012)CrossRefGoogle Scholar
  27. 27.
    Avril, S., Pierron, F.: General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int. J. Solids Struct. 44, 4978–5002 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations