Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 2, pp 153–161 | Cite as

An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid

  • Bo Yu
  • Xiaoyun JiangEmail author
  • Haitao Qi
Research Paper

Abstract

In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we first obtain the fractional sensitivity equation by means of the digamma function, and then we propose an efficient numerical method, that is, the Levenberg–Marquardt algorithm based on a fractional derivative, to estimate the unknown order of a Riemann–Liouville fractional derivative. In order to demonstrate the effectiveness of the proposed numerical method, two cases in which the measurement values contain random measurement error or not are considered. The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid.

Graphical Abstract

In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we obtain the fractional sensitivity equation by means of the digamma function. Numerical simulations demonstrate the effectiveness of the proposed method.

Keywords

Riemann–Liouville fractional derivative Generalized second grade fluid Inverse problem  Implicit numerical method Fractional sensitivity equation 

Notes

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grants 11472161, 11102102, and 91130017), the Independent Innovation Foundation of Shandong University (Grant 2013ZRYQ002), and the Natural Science Foundation of Shandong Province (Grant ZR2014AQ015)

References

  1. 1.
    Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1, 161–198 (1971)CrossRefGoogle Scholar
  2. 2.
    Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Tan, W.C., Fu, C., Xie, W., et al.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 183901–183903 (2007)Google Scholar
  4. 4.
    Ning, T.H., Jiang, X.Y.: Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation. Acta. Mech. Sin. 27, 994–1000 (2011)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Klafter, J.: Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)CrossRefGoogle Scholar
  6. 6.
    Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. J. Phys. A 45, 485101 (2012)MathSciNetGoogle Scholar
  7. 7.
    Yu, B., Jiang, X.Y.: A fractional anomalous diffusion model and numerical simulation for sodium ion transport in the intestinal wall. Adv. Math. Phys. 2013, 479634 (2013)MathSciNetGoogle Scholar
  8. 8.
    Tan, W.C., Xu, M.Y.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta. Mech. Sin. 20, 471–476 (2004)MathSciNetGoogle Scholar
  9. 9.
    Qi, H.T., Xu, M.Y.: Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta. Mech. Sin. 23, 463–469 (2007)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Shan, L., Tong, D., Xue, L.: Unsteady flow of non-Newtonian visco-elastic fluid in dual-porosity media with the fractional derivative. J. Hydrodyn. Ser. B 21, 705–713 (2009)Google Scholar
  11. 11.
    Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 405, 4188–4194 (2010)Google Scholar
  12. 12.
    Mahmood, A., Parveen, S., Ara, A., et al.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. Numer. Simul. 14, 3309–3319 (2009)zbMATHGoogle Scholar
  13. 13.
    Shen, F., Tan, W.C., Zhao, Y., et al.: The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, 1072–1080 (2006)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Fetecau, C., Athar, M., Fetecau, C.: Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. Comput. Math. Appl. 57, 596–603 (2009)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Zheng, L., Zhao, F., Zhang, X.: Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate. Nonlinear Anal. 11, 3744–3751 (2010)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Vieru, D., Fetecau, C., Sohail, A.: Flow due to a plate that applies an accelerated shear to a second grade fluid between two parallel walls perpendicular to the plate. Z. Angew. Math. Phys. 62, 161–172 (2011)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Kang, J.H., Xu, M.Y.: Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. Acta Mech. Sin. 25, 181–186 (2009)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus Continuum Mechanics, pp. 291–348. Springer, Vienna (1997)CrossRefGoogle Scholar
  19. 19.
    Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In: Keil, F., Mackens, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Müller, S., Kästner, M., Brummund, J., et al.: On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput. Mech. 51, 999–1012 (2013)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Chen, C.M., Liu, F., Anh, V.: A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 223, 777–789 (2009)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 264, 163–177 (2013)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetGoogle Scholar
  24. 24.
    Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Yu, B., Jiang, X.Y., Xu, H.Y.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms (2014). doi: 10.1007/s11075-014-9877-1
  26. 26.
    Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Fu, Z.J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Boundary Elem. (2014). doi: 10.1016/j.enganabound.2014.09.003i
  28. 28.
    Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order differential operator in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)Google Scholar
  29. 29.
    Özisik, M.N.: Inverse Heat Transfer: Fundamentals and Applications. CRC Press, Boca Raton (2000)Google Scholar
  30. 30.
    Battaglia, J.L., Cois, O., Puigsegur, L., et al.: Solving an invese heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transf. 44, 2671–2680 (2001)zbMATHGoogle Scholar
  31. 31.
    Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Zhang, Y., Xu, X.: Inverse source problem for a fractional diffusion equation. Inverse Prob. 27, 035010 (2011)Google Scholar
  33. 33.
    Cheng, J., Nakagawa, J., Yamamoto, M., et al.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Prob. 25, 115002 (2009)MathSciNetGoogle Scholar
  34. 34.
    Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55, 2095–2101 (2012)Google Scholar
  35. 35.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  36. 36.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Marquardt, D.W.: An algorithm for the least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Medina, L., Moll, V.: The integrals in Gradshteyn and Ryzhik. Part 10: the Digamma function, scientia series A: mathematical. Sciences 17, 45–66 (2009)zbMATHMathSciNetGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina
  2. 2.School of Mathematics and StatisticsShandong UniversityWeihaiChina

Personalised recommendations