Skip to main content
Log in

Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

An Erratum to this article was published on 18 November 2015

Abstract

In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic “pillar” structure and a nacreous “brick and mortar” structure. The prismatic layer looks like a “pillar forest” with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a “brick wall” with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xie, Z.Q., Yao, H.M.: Crack deflection and flaw tolerance in “brick-and-mortar” structured composites. Int. J. Appl. Mech. 6, 1450017 (2014)

    Article  Google Scholar 

  2. Shao, Y., Zhao, H.P., Feng, X.Q.: On flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)

    Article  Google Scholar 

  3. Xu, J., Zhao, X.L., Munroe, P., et al.: Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure. Sci. Rep. 4, 4239 (2014)

    Google Scholar 

  4. Brandt, K., Wolff, M.F.H., Salikov, V., et al.: A novel method for a multi-level hierarchical composite with brick-and-mortar structure. Sci. Rep. 3, 2322 (2013)

    Article  Google Scholar 

  5. Ji, B.H., Gao, H.J.: Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010)

    Article  Google Scholar 

  6. Bechtle, S., Ang, S.F., Schneider, G.A.: On the mechanical properties of hierarchically structured biological materials. Biomaterial 31, 6378–6385 (2010)

    Article  Google Scholar 

  7. Ji, B.H., Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)

    Article  MATH  Google Scholar 

  8. Weiner, S., Veis, A., Beniash, E., et al.: Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126, 27–41 (1999)

    Article  Google Scholar 

  9. Tesch, W., Eidelman, N., Roschger, P., et al.: Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69, 147–157 (2001)

    Article  Google Scholar 

  10. Landis, W.J.: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533–544 (1995)

    Article  Google Scholar 

  11. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  12. Weiner, S., Wagner, H.D.: The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  Google Scholar 

  13. Taylor, J.D., Layman, M.: The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15, 73–87 (1972)

    Google Scholar 

  14. Currey, J.D., Taylor, J.D.: The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395–406 (1974)

    Article  Google Scholar 

  15. Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B 196, 443–463 (1977)

    Article  Google Scholar 

  16. Kamat, S., Su, X., Ballarini, R., et al.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000)

  17. Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988)

    Article  Google Scholar 

  18. Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical of haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398 (2000)

  19. Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297, 203–211 (2001)

  20. Almqvist, N., Thomson, N.H., Smith, B.L., et al.: Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37–43 (1999)

    Article  Google Scholar 

  21. Jackson, A.P., Vincent, J.F.V.: Comparason of nacre with other ceramic composites. J. Mater. Sci. 25, 3173–3178 (1990)

    Article  Google Scholar 

  22. Wang, R.Z., Suo, Z., Evans, A.G., et al.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)

    Article  Google Scholar 

  23. Evans, A.G., Suo, Z., Wang, R.Z., et al.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001)

    Article  Google Scholar 

  24. Song, F., Soh, A.K., Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3621–3631 (2003)

    Article  Google Scholar 

  25. Song, F., Bai, Y.L.: Effects of Nanstructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741–1744 (2003)

    Article  Google Scholar 

  26. Katti, K.S., Katti, D.R., Pradhan, S.M., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)

  27. Barthelata, F., Tang, H., Zavattieri, P.D., et al.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2006)

    Article  Google Scholar 

  28. Zuo, S.C., Wei, Y.G.: Microstructure observation and mechanical behavior modeling for limnetic nacre. Acta Mech. Sin. 24, 83–89 (2008)

    Article  Google Scholar 

  29. Wang, R.Z., Wen, H.B., Cui, F.Z., et al.: Observation of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299–2304 (1995)

    Article  Google Scholar 

  30. Li, X.D., Chang, W.C., Chao, Y.J., et al.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–7 (2004)

    Article  Google Scholar 

  31. Bruet, B.J.F., Qi, H.J., Boyce, M.C., et al.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–19 (2005)

    Article  Google Scholar 

  32. Katti, K.S., Mohanty, B., Katti, D.R.: Nanomechanical properties of nacre. J. Mater. Res. 21, 1237–1242 (2006)

    Article  Google Scholar 

  33. Sun, J.Y., Tong, J.: Fracture toughness properties of three different biomaterials measured by nanoindentation. J. Bionic Eng. 4, 11–17 (2007)

    Article  MATH  Google Scholar 

  34. Fleischli, F.D., Dietiker, M., Borgia, C., et al.: The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells. Acta Biomater. 4, 1694–1706 (2008)

    Article  Google Scholar 

  35. Gao, H.J.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)

    Article  MATH  Google Scholar 

  36. Zuo, S.C., Wei, Y.G.: Effective elastic modulus of bone-like hierarchical materials. Acta Mech. Solida Sin. 20, 198–205 (2007)

    Article  Google Scholar 

  37. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–83 (1992)

    Article  Google Scholar 

  38. Wei, Y.G., Xu, G.: A multiscale model for the ductile fracture of crystalline materials. Int. J. Plast. 21, 2123–2149 (2005)

    Article  MATH  Google Scholar 

  39. Wei, Y.G., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45, 1253–1273 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wei, Y.G.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A/Solids 25, 897–913 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wu, B., Liang, L.H., Ma, H.S., et al.: A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Comput. Mater. Sci. 57, 2–7 (2012)

  42. Song, J.R., Liu, J.Y., Ma, H.S., et al.: Determinations of both length scales and surface elastic parameters for fcc metals. C. R. Mecanique 342, 315–325 (2014)

  43. Wei, Y.G., Wang, X.Z., Wu, X.L., et al.: Theoretical and experimental researches of size effect in micro-indentation test. Sci. China Ser. A 44, 74–82 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueguang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Fan, C., Ma, H. et al. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell. Acta Mech Sin 31, 364–372 (2015). https://doi.org/10.1007/s10409-015-0405-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0405-x

Keywords

Navigation