Acta Mechanica Sinica

, Volume 31, Issue 3, pp 364–372 | Cite as

Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

  • Jingru Song
  • Cuncai Fan
  • Hansong Ma
  • Yueguang WeiEmail author
Research Paper


In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic “pillar” structure and a nacreous “brick and mortar” structure. The prismatic layer looks like a “pillar forest” with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a “brick wall” with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.


Biomaterial Hierarchical structure Mechanical property Nanoindentation size effect Trans-scale mechanics 


  1. 1.
    Xie, Z.Q., Yao, H.M.: Crack deflection and flaw tolerance in “brick-and-mortar” structured composites. Int. J. Appl. Mech. 6, 1450017 (2014)CrossRefGoogle Scholar
  2. 2.
    Shao, Y., Zhao, H.P., Feng, X.Q.: On flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)CrossRefGoogle Scholar
  3. 3.
    Xu, J., Zhao, X.L., Munroe, P., et al.: Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure. Sci. Rep. 4, 4239 (2014)Google Scholar
  4. 4.
    Brandt, K., Wolff, M.F.H., Salikov, V., et al.: A novel method for a multi-level hierarchical composite with brick-and-mortar structure. Sci. Rep. 3, 2322 (2013)CrossRefGoogle Scholar
  5. 5.
    Ji, B.H., Gao, H.J.: Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010)CrossRefGoogle Scholar
  6. 6.
    Bechtle, S., Ang, S.F., Schneider, G.A.: On the mechanical properties of hierarchically structured biological materials. Biomaterial 31, 6378–6385 (2010)CrossRefGoogle Scholar
  7. 7.
    Ji, B.H., Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Weiner, S., Veis, A., Beniash, E., et al.: Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126, 27–41 (1999)CrossRefGoogle Scholar
  9. 9.
    Tesch, W., Eidelman, N., Roschger, P., et al.: Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69, 147–157 (2001)CrossRefGoogle Scholar
  10. 10.
    Landis, W.J.: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533–544 (1995)CrossRefGoogle Scholar
  11. 11.
    Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)CrossRefGoogle Scholar
  12. 12.
    Weiner, S., Wagner, H.D.: The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)CrossRefGoogle Scholar
  13. 13.
    Taylor, J.D., Layman, M.: The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15, 73–87 (1972)Google Scholar
  14. 14.
    Currey, J.D., Taylor, J.D.: The mechanical behaviour of some molluscan hard tissues. J. Zool. 173, 395–406 (1974)CrossRefGoogle Scholar
  15. 15.
    Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B 196, 443–463 (1977)CrossRefGoogle Scholar
  16. 16.
    Kamat, S., Su, X., Ballarini, R., et al.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000)Google Scholar
  17. 17.
    Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988)CrossRefGoogle Scholar
  18. 18.
    Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical of haliotis rufescens (abalone) shells. Acta Mater. 48, 2383–2398 (2000)Google Scholar
  19. 19.
    Menig, R., Meyers, M.H., Meyers, M.A., et al.: Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Mater. Sci. Eng. A 297, 203–211 (2001)Google Scholar
  20. 20.
    Almqvist, N., Thomson, N.H., Smith, B.L., et al.: Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37–43 (1999)CrossRefGoogle Scholar
  21. 21.
    Jackson, A.P., Vincent, J.F.V.: Comparason of nacre with other ceramic composites. J. Mater. Sci. 25, 3173–3178 (1990)CrossRefGoogle Scholar
  22. 22.
    Wang, R.Z., Suo, Z., Evans, A.G., et al.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)CrossRefGoogle Scholar
  23. 23.
    Evans, A.G., Suo, Z., Wang, R.Z., et al.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001)CrossRefGoogle Scholar
  24. 24.
    Song, F., Soh, A.K., Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3621–3631 (2003)CrossRefGoogle Scholar
  25. 25.
    Song, F., Bai, Y.L.: Effects of Nanstructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741–1744 (2003)CrossRefGoogle Scholar
  26. 26.
    Katti, K.S., Katti, D.R., Pradhan, S.M., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)Google Scholar
  27. 27.
    Barthelata, F., Tang, H., Zavattieri, P.D., et al.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2006)CrossRefGoogle Scholar
  28. 28.
    Zuo, S.C., Wei, Y.G.: Microstructure observation and mechanical behavior modeling for limnetic nacre. Acta Mech. Sin. 24, 83–89 (2008)CrossRefGoogle Scholar
  29. 29.
    Wang, R.Z., Wen, H.B., Cui, F.Z., et al.: Observation of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299–2304 (1995)CrossRefGoogle Scholar
  30. 30.
    Li, X.D., Chang, W.C., Chao, Y.J., et al.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–7 (2004)CrossRefGoogle Scholar
  31. 31.
    Bruet, B.J.F., Qi, H.J., Boyce, M.C., et al.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–19 (2005)CrossRefGoogle Scholar
  32. 32.
    Katti, K.S., Mohanty, B., Katti, D.R.: Nanomechanical properties of nacre. J. Mater. Res. 21, 1237–1242 (2006)CrossRefGoogle Scholar
  33. 33.
    Sun, J.Y., Tong, J.: Fracture toughness properties of three different biomaterials measured by nanoindentation. J. Bionic Eng. 4, 11–17 (2007)zbMATHCrossRefGoogle Scholar
  34. 34.
    Fleischli, F.D., Dietiker, M., Borgia, C., et al.: The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells. Acta Biomater. 4, 1694–1706 (2008)CrossRefGoogle Scholar
  35. 35.
    Gao, H.J.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)zbMATHCrossRefGoogle Scholar
  36. 36.
    Zuo, S.C., Wei, Y.G.: Effective elastic modulus of bone-like hierarchical materials. Acta Mech. Solida Sin. 20, 198–205 (2007)CrossRefGoogle Scholar
  37. 37.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–83 (1992)CrossRefGoogle Scholar
  38. 38.
    Wei, Y.G., Xu, G.: A multiscale model for the ductile fracture of crystalline materials. Int. J. Plast. 21, 2123–2149 (2005)zbMATHCrossRefGoogle Scholar
  39. 39.
    Wei, Y.G., Hutchinson, J.W.: Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J. Mech. Phys. Solids 45, 1253–1273 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Wei, Y.G.: A new finite element method for strain gradient theories and applications to fracture analyses. Eur. J. Mech. A/Solids 25, 897–913 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Wu, B., Liang, L.H., Ma, H.S., et al.: A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Comput. Mater. Sci. 57, 2–7 (2012)Google Scholar
  42. 42.
    Song, J.R., Liu, J.Y., Ma, H.S., et al.: Determinations of both length scales and surface elastic parameters for fcc metals. C. R. Mecanique 342, 315–325 (2014)Google Scholar
  43. 43.
    Wei, Y.G., Wang, X.Z., Wu, X.L., et al.: Theoretical and experimental researches of size effect in micro-indentation test. Sci. China Ser. A 44, 74–82 (2001)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jingru Song
    • 1
  • Cuncai Fan
    • 1
  • Hansong Ma
    • 1
  • Yueguang Wei
    • 1
    Email author
  1. 1.LNM, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations