Acta Mechanica Sinica

, Volume 31, Issue 3, pp 319–337 | Cite as

The mechanical behavior of nanoscale metallic multilayers: A survey

  • Q. Zhou
  • J. Y. Xie
  • F. WangEmail author
  • P. Huang
  • K. W. Xu
  • T. J. LuEmail author
Review Paper


The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.


Multilayer Interface Microstructure Mechanical behavior 



This work was supported by the National Natural Science Foundation of China (Grants 51171141, 51271141, and 51471131) and the Program for New Century Excellent Talents in University (Grant NCET-11-0431).


  1. 1.
    Misra, A., Verdier, M., Lu, Y., et al.: Structure and mechanical properties of Cu–X (\(X = \text{ Nb }\), Cr, Ni) nanolayered composites. Scripta Materialia 39, 555–560 (1998)CrossRefGoogle Scholar
  2. 2.
    Clemens, B.M., Kung, H., Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24, 20–26 (1999)Google Scholar
  3. 3.
    Misra, A., Kung, H., Embury, J.D.: Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Materialia 50, 707–710 (2004)CrossRefGoogle Scholar
  4. 4.
    Bufford, D., Bi, Z., Jia, Q.X., et al.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012)CrossRefGoogle Scholar
  5. 5.
    Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008)CrossRefGoogle Scholar
  6. 6.
    Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Ultrahigh strength and ductility of Cu–Nb nanolayered composites. Mater. Sci. Forum 633–634, 647–653 (2009)CrossRefGoogle Scholar
  7. 7.
    Misra, A., Zhang, X., Hammon, D., et al.: Work hardening in rolled nanolayered metallic composites. Acta Materialia 53, 221–226 (2005)CrossRefGoogle Scholar
  8. 8.
    Zhang, J.Y., Zhang, X., Wang, R.H., et al.: Length-scale-dependent deformation and fracture behavior of Cu/X (\(X = \text{ Nb }\), Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Materialia 59, 7368–7379 (2011)CrossRefGoogle Scholar
  9. 9.
    Demkowicz, M.J., Hoagland, R.G., Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008)CrossRefGoogle Scholar
  10. 10.
    Han, W.Z., Demkowicz, M.J., Mara, N.A., et al.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975–6979 (2013)CrossRefGoogle Scholar
  11. 11.
    Hattar, K., Demkowicz, M.J., Misra, A., et al.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposite. Scripta Materialia 58, 541–544 (2008)CrossRefGoogle Scholar
  12. 12.
    Li, N., Nastasi, M., Misra, A.: Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32–33, 1–16 (2012)CrossRefGoogle Scholar
  13. 13.
    Han, W.Z., Misra, A., Mara, N.A., et al.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91, 4172–4185 (2011)CrossRefGoogle Scholar
  14. 14.
    Han, W.Z., Cerreta, E.K., Mara, N.A., et al.: Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Materialia 63, 150–161 (2014)CrossRefGoogle Scholar
  15. 15.
    Misra, A., Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046–2054 (2005)CrossRefGoogle Scholar
  16. 16.
    Zheng, S., Beyerlein, I.J., Carpenter, J.S., et al.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013)CrossRefGoogle Scholar
  17. 17.
    Wen, S.P., Zong, R.L., Zeng, F., et al.: Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf. Coat. Technol. 202, 2040–2046 (2008)CrossRefGoogle Scholar
  18. 18.
    Dew-Hughes, D.: High strength conductor for pulsed magnets. Mater. Sci. Eng. A 168, 35–40 (1993)CrossRefGoogle Scholar
  19. 19.
    Freudenberger, J., Grunberger, W., Botcharova, E., et al.: Mechanical properties of Cu-based micro- and macrocomposites. Adv. Eng. Mater. 4, 677–681 (2002)CrossRefGoogle Scholar
  20. 20.
    Sandim, M.J.R., Stamopoulos, D., Ghivelder, L., et al.: Paramagnetic meissner effect and AC magnetization in roll-bonded Cu–Nb layered composites. J. Superconduct. Novel Magn. 23, 1533–1541 (2010)CrossRefGoogle Scholar
  21. 21.
    Beyerlein, I.J., Wang, J., Zhang, R.: Mapping dislocation nucleation behavior from bimetal interfaces. Acta Materialia 61, 7488–7499 (2013)CrossRefGoogle Scholar
  22. 22.
    Mara, N.A., Beyerlein, I.J.: Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497–6516 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhou, Q., Wang, F., Huang, P., et al.: Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers. Thin Solid Films 571, 253–259 (2014)Google Scholar
  24. 24.
    Geng, H.: Semiconductor Manufacturing Handbook, 1st edn. McGraw-Hill Professional, Blacklick (2005)Google Scholar
  25. 25.
    Thompson, C.V.: Grain-growth in thin-films. Annu. Rev. Mater. Sci. 20, 245–268 (1990)CrossRefGoogle Scholar
  26. 26.
    Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)CrossRefGoogle Scholar
  27. 27.
    Wei, Q., Misra, A.: Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers. Acta Materialia 58, 4871–4882 (2010)Google Scholar
  28. 28.
    Chirranjeevi, B.G., Abinandanan, T.A., Gururajan, M.P.: A phase field study of morphological instabilities in multilayer thin films. Acta Materialia 57, 1060–1067 (2009)CrossRefGoogle Scholar
  29. 29.
    Bakonyi, I., Peter, L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog. Mater. Sci. 55, 107–245 (2010)CrossRefGoogle Scholar
  30. 30.
    Yahalom, J., Tessier, D.F., Timsit, R.S., et al.: Structure of composition-modulated Cu/Ni thin-films prepared by electrodeposition. J. Mater. Res. 4, 755–758 (1989)CrossRefGoogle Scholar
  31. 31.
    Haseeb, A.S.M.A., Celis, J.P., Roos, J.R.: Dual-bath electrodeposition of Cu/Ni compositionally modulated multilayers. J. Electrochem. Soc. 141, 230–237 (1994)CrossRefGoogle Scholar
  32. 32.
    Toth-Kadar, E., Peter, L., Becsei, T., et al.: Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J. Electrochem. Soc. 147, 3311–3318 (2000)CrossRefGoogle Scholar
  33. 33.
    Wen, S.P., Zeng, F., Pan, F., et al.: The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers. Mater. Sci. Eng. A 526, 166–170 (2009)CrossRefGoogle Scholar
  34. 34.
    Wen, S.P., Zeng, F., Gao, Y., et al.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Materialia 55, 187–190 (2006)CrossRefGoogle Scholar
  35. 35.
    Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. J. Mater. Res. 22, 3423–3431 (2007)CrossRefGoogle Scholar
  36. 36.
    Wen, S.P., Zong, R.L., Zeng, F., et al.: Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Materialia 55, 345–351 (2007)CrossRefGoogle Scholar
  37. 37.
    Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl. Surf. Sci. 255, 4558–4562 (2009)CrossRefGoogle Scholar
  38. 38.
    Zhu, X.Y., Liu, X.J., Zong, R.L., et al.: Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater. Sci. Eng. A 527, 1243–1248 (2010)CrossRefGoogle Scholar
  39. 39.
    Liu, Y., Bufford, D., Wang, H., et al.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Materialia 59, 1924–1933 (2011)CrossRefGoogle Scholar
  40. 40.
    Liu, Y., Chen, Y., Yu, K.Y., et al.: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152–163 (2013)CrossRefGoogle Scholar
  41. 41.
    Zhu, X.Y., Luo, J.T., Chen, G., et al.: Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films. J. Alloys Compd. 506, 434–440 (2010)CrossRefGoogle Scholar
  42. 42.
    Zhu, X.Y., Luo, J.T., Zeng, F., et al.: Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films 520, 818–823 (2011)CrossRefGoogle Scholar
  43. 43.
    Wang, F., Zhang, L.F., Huang, P., et al.: Microstructure and flow stress of nanoscale Cu/Nb multilayers. J. Nanomater. (2013). doi: 10.1155/2013/912548
  44. 44.
    Bauer, E., Merwe, J.H.V.D.: Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986)CrossRefGoogle Scholar
  45. 45.
    Zhou, Q., Li, Y., Wang, F., et al.: Length-scale-dependent mechanical properties of Cu/Ru multilayer films: Part I. Microstructure and strengthening mechanisms. (To be submitted to Acta Mater.)Google Scholar
  46. 46.
    Lewis, A.C., Josell, D., Weihs, T.P.: Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Materialia 48, 1079–1085 (2003)CrossRefGoogle Scholar
  47. 47.
    Misra, A., Hoagland, R.G., Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021–1028 (2004)CrossRefGoogle Scholar
  48. 48.
    Wan, H., Shen, Y., Wang, J., et al.: A predictive model for microstructure evolution in metallic multilayers with immiscible constituents. Acta Materialia 60, 6869–6881 (2012)CrossRefGoogle Scholar
  49. 49.
    Beyerlein, I.J., Mara, N.A., Wang, J., et al.: Structure–property–functionality of bimetal interfaces. JOM 64, 1192–1207 (2012)CrossRefGoogle Scholar
  50. 50.
    Kang, K., Wang, J., Beyerlein, I.J.: Atomic structure variations of mechanically stable fcc–bcc interfaces. J. Appl. Phys. 5, 053531 (2012)CrossRefGoogle Scholar
  51. 51.
    Wang, J., Hoagland, R.G., Misra, A.: Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scripta Materialia 60, 1067–1072 (2009)CrossRefGoogle Scholar
  52. 52.
    Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Materialia 56, 5685–5693 (2008)CrossRefGoogle Scholar
  53. 53.
    Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Materialia 56, 3109–3119 (2008)CrossRefGoogle Scholar
  54. 54.
    Hoagland, R.G., Kurtz, R.J., Henager Jr, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia 50, 775–779 (2004)CrossRefGoogle Scholar
  55. 55.
    Beyerlein, I.J., Wang, J., Zhang, R.: Interface-dependent nucleation in nanostructured layered composites. APL Mater. 1, 032112 (2013)CrossRefGoogle Scholar
  56. 56.
    Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Materialia 60, 2855–2865 (2012)CrossRefGoogle Scholar
  57. 57.
    Kulkarni, Y., Asaro, R.J.: Are some nanotwinned fcc metals optimal for strength, ductility and grain stability? Acta Materialia 57, 4835–4844 (2009)CrossRefGoogle Scholar
  58. 58.
    Zhang, X., Misra, A., Wang, H., et al.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096–1098 (2004)CrossRefGoogle Scholar
  59. 59.
    Lu, L., Shen, Y.F., Chen, X.H., et al.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)CrossRefGoogle Scholar
  60. 60.
    Zhang, X., Misra, A.: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scripta Materialia 66, 860–865 (2012)CrossRefGoogle Scholar
  61. 61.
    Anderoglu, O., Misra, A., Wang, J., et al.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875–886 (2010)zbMATHCrossRefGoogle Scholar
  62. 62.
    Li, N., Wang, J., Misra, A., et al.: Twinning dislocation multiplication at a coherent twin boundary. Acta Materialia 59, 5989–5996 (2011)CrossRefGoogle Scholar
  63. 63.
    Lu, L., Shen, Y.F., Dao, M., et al.: Strain rate sensitivity of Cu with nanoscale twins. Scripta Materialia 55, 319–322 (2006)CrossRefGoogle Scholar
  64. 64.
    Liu, Y., Bufford, D., Rioset, S., et al.: A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. J. Appl. Phys. 111, 073526 (2012)CrossRefGoogle Scholar
  65. 65.
    Bufford, D., Liu, Y., Zhu, Y., et al.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51–60 (2013)CrossRefGoogle Scholar
  66. 66.
    Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  67. 67.
    Mata, M., Anglada, M., Alcala, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964–976 (2002)CrossRefGoogle Scholar
  68. 68.
    Blum, W.: The structure and properties of alternately deposited metals. Trans. Am. Electrochem. Soc. 40, 307–320 (1921)Google Scholar
  69. 69.
    Misra, A., Hirth, J.P., Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82, 2935–2951 (2002)CrossRefGoogle Scholar
  70. 70.
    Tench, D.M., White, J.T.: Tensile properties of nanostructured Ni–Cu multilayered materials prepared by electrodeposition. J. Electrochem. Soc. 138, 3757–3758 (1991)CrossRefGoogle Scholar
  71. 71.
    Carpenter, J.S., Misra, A., Uchic, M.D., et al.: Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl. Phys. Lett. 101, 051901 (2012)CrossRefGoogle Scholar
  72. 72.
    Carpenter, J.S., Misra, A., Anderson, P.M.: Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Materialia 60, 2625–2636 (2012)CrossRefGoogle Scholar
  73. 73.
    Cammarata, R.C., Schlesinger, T.E., Kim, C., et al.: Nanoindentation study of the mechanical-properties of cppper–nickel multilayered thin-films. Appl. Phys. Lett. 56, 1862–1864 (1990)CrossRefGoogle Scholar
  74. 74.
    Rao, S.I., Hazzledine, P.M.: Atomistic simulations of dislocation–interface interactions in the Cu–Ni multilayer system. Philos. Mag. A 80, 2011–2040 (2000)CrossRefGoogle Scholar
  75. 75.
    Hoagland, R.G., Mitchell, T.E., Hirth, J.P., et al.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643–664 (2002)Google Scholar
  76. 76.
    Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia 53, 4817–4824 (2005)CrossRefGoogle Scholar
  77. 77.
    Zhang, J.Y., Zhang, P., Zhang, X., et al.: Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater. Sci. Eng. A 545, 118–122 (2012)CrossRefGoogle Scholar
  78. 78.
    Mara, N.A., Bhattacharyya, D., Hoagland, R.G., et al.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Materialia 58, 874–877 (2008)CrossRefGoogle Scholar
  79. 79.
    Fu, E.G., Li, N., Misra, A., et al.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283–287 (2008)CrossRefGoogle Scholar
  80. 80.
    Koehler, J.: Attempt to design a strong solid. Phys. Rev. B 2, 547–551 (1970)CrossRefGoogle Scholar
  81. 81.
    Akcakaya, E., Famell, G.W., Adler, E.L.: Dynamic approach for finding effective elastic and piezoelectric constants of superlattices. J. Appl. Phys. 68, 1009 (1990)CrossRefGoogle Scholar
  82. 82.
    Li, Y.P., Zhu, X.F., Zhang, G.P., et al.: Investigation of deformation instability of Au/Cu multilayers by indentation. Philos. Mag. 90, 3049–3067 (2010)CrossRefGoogle Scholar
  83. 83.
    Chen, Y., Liu, Y., Sun, C., et al.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Materialia 60, 6312–6321 (2012)CrossRefGoogle Scholar
  84. 84.
    Huang, P., Wang, F., Xu, M., et al.: Strain rate sensitivity of unequal grained nano-multilayers. Mater. Sci. Eng. A 528, 5908–5913 (2011)CrossRefGoogle Scholar
  85. 85.
    Zhang, J.Y., Liu, Y., Chen, J., et al.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng. A 552, 392–398 (2012)CrossRefGoogle Scholar
  86. 86.
    Hu, K., Xu, L.J., Cao, Y.Q., et al.: Modulating individual thickness for optimized combination of strength and ductility inCu/Ru multilayer films. Mater. Lett. 107, 303–306 (2013)Google Scholar
  87. 87.
    Lai, W.S., Yang, M.J.: Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation. Appl. Phys. Lett. 90, 181917 (2007)Google Scholar
  88. 88.
    Wen, S.P., Zeng, F., Gao, Y., et al.: Microstructure and nanoindentation investigation of magnetron sputtering Ag/Co multilayers. Surf. Coat. Technol. 201, 1262–1266 (2006)CrossRefGoogle Scholar
  89. 89.
    Wen, S.P., Zong, R.L., Zeng, F., et al.: Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers. Mater. Sci. Eng. A 457, 38–43 (2007)CrossRefGoogle Scholar
  90. 90.
    Abadias, G., Jaouen, C., Martin, F., et al.: Experimental evidence for the role of supersaturated interfacial alloys on the shear elastic softening of Ni/Mo superlattices. Phys. Rev. B 65, 212105 (2002)CrossRefGoogle Scholar
  91. 91.
    Zhang, J.Y., Niu, J.J., Zhang, X., et al.: Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus. Mater. Sci. Eng. A 543, 139–144 (2012)CrossRefGoogle Scholar
  92. 92.
    Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia 48, 3261–3269 (2000)CrossRefGoogle Scholar
  93. 93.
    Zhang, J.Y., Lei, S., Liu, Y., et al.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Materialia 60, 1610–1622 (2012)CrossRefGoogle Scholar
  94. 94.
    Mara, N.A., Bhattacharyya, D., Hirth, J.P., et al.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010)CrossRefGoogle Scholar
  95. 95.
    Carpenter, J.S., Vogel, S.C., LeDonne, J.E., et al.: Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Materialia 60, 1576–1586 (2012)CrossRefGoogle Scholar
  96. 96.
    Anderson, P.M., Bingert, J.F., Misra, A., et al.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Materialia 51, 6059–6075 (2003)CrossRefGoogle Scholar
  97. 97.
    Misra, A., Kung, H., Hammon, D., et al.: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365–376 (2003)CrossRefGoogle Scholar
  98. 98.
    Hsia, K.J., Suo, Z., Yang, W.: Cleavage due to dislocation confinement in layered materials. J. Mech. Phys. Solids 42, 877–896 (1994)CrossRefGoogle Scholar
  99. 99.
    Was, G.S., Foecke, T.: Deformation and fracture in microlaminates. Thin Solid Films 286, 1–31 (1996)CrossRefGoogle Scholar
  100. 100.
    Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1989)Google Scholar
  101. 101.
    Zhang, J.Y., Liu, G., Sun, J., et al.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng. A 528, 2982–2987 (2011)CrossRefGoogle Scholar
  102. 102.
    Zhou, Q., Zhao, J., Xie, J.Y., et al.: Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films. Mater. Sci. Eng. A 608, 184–189 (2014)CrossRefGoogle Scholar
  103. 103.
    Lu, L., Schwaiger, R., Shan, Z.W., et al.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia 53, 2169–2179 (2005)CrossRefGoogle Scholar
  104. 104.
    Schwaiger, R., Moser, B., Dao, M., et al.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Materialia 51, 5159–5172 (2003)CrossRefGoogle Scholar
  105. 105.
    Wei, Q., Cheng, S., Ramesh, K.T., et al.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)CrossRefGoogle Scholar
  106. 106.
    Wang, F., Li, B., Gao, T.T., et al.: Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti. Surf. Coat. Technol. 228, S254–S256 (2012)CrossRefGoogle Scholar
  107. 107.
    Niu, J.J., Zhang, J.Y., Liu, G., et al.: Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (\(X=\text{ Cr }\), Zr) multilayer films. Acta Materialia 60, 3677–3689 (2012)CrossRefGoogle Scholar
  108. 108.
    Zhu, X.Y., Liu, X.J., Zeng, F., et al.: Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers. Mater. Lett. 64, 53–56 (2010)CrossRefGoogle Scholar
  109. 109.
    Shen, B.L., Itoi, T., Yamasaki, T., et al.: Indentation creep of nanocrystalline Cu–TiC alloys prepared by mechanical alloying. Scripta Materialia 42, 893–898 (2000)CrossRefGoogle Scholar
  110. 110.
    Wang, J., Hoagland, R.G., Misra, A.: Room-temperature dislocation climb in metallic interfaces. Appl. Phys. Lett. 94, 131910 (2009)CrossRefGoogle Scholar
  111. 111.
    Kang, B.C., Kim, H.Y., Kwon, O.Y., et al.: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Materialia 57, 703–706 (2007)CrossRefGoogle Scholar
  112. 112.
    Zhang, J.Y., Wang, Y.Q., Wu, K., et al.: Strain rate sensitivity of nanolayered Cu/X (\(X=\text{ Cr }\), Zr) micropillars: effects of heterophase interface/twin boundary. Mater. Sci. Eng. A 61, 228–240 (2014)Google Scholar
  113. 113.
    Friedman, L.H., Chrzan, D.C.: Scaling theory of the Hall–Petch relation for multilayers. Phys. Rev. Lett. 81, 2715–2718 (1998)CrossRefGoogle Scholar
  114. 114.
    Embury, J.D., Hirth, J.P.: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metallurgica et Materialia 42, 2051–2056 (1994)CrossRefGoogle Scholar
  115. 115.
    Anderson, P.M., Foecke, T., Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27–33 (1999)Google Scholar
  116. 116.
    Wang, J., Misra, A.: Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 18, 19–28 (2014)CrossRefGoogle Scholar
  117. 117.
    Kramer, D.E., Foecke, T.: Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos. Mag. A 82, 3375–3381 (2002)CrossRefGoogle Scholar
  118. 118.
    Tu, K., Mayer, J.W., Feldman, L.C.: Electronic Thin Film Science: for Electrical Engineers and Materials Scientists. Macmillan, New York (1992)Google Scholar
  119. 119.
    Misra, A., Verdier, M., Kung, H., et al.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Materialia 41, 973–979 (1999)CrossRefGoogle Scholar
  120. 120.
    Yan, J.W., Zhu, X.F., Zhang, G.P., et al.: Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films 527, 227–231 (2013)CrossRefGoogle Scholar
  121. 121.
    Kamat, S.V., Hirth, J.P.: Dislocation injection in strained multilayer structures. J. Appl. Phys. 67, 6844–6850 (1990)CrossRefGoogle Scholar
  122. 122.
    Mastorakos, I.N., Zbib, H.M., Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009)CrossRefGoogle Scholar
  123. 123.
    Lehoczky, S.L.: Strength enhancement in thin-layered Al–Cu laminates. J. Appl. Phys. 49, 5479–5485 (1978)CrossRefGoogle Scholar
  124. 124.
    Shinn, M., Hultman, L., Barnett, S.A.: Growth, structure, and microhardness of epitaxial TIN/NBN superlattices. J. Mater. Res. 7, 901–911 (1992)CrossRefGoogle Scholar
  125. 125.
    Xu, J.H., Kamiko, M., Sawada, H., et al.: Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. J. Vac. Sci. Technol. B 21, 2584–2589 (2003)CrossRefGoogle Scholar
  126. 126.
    Li, Y.P., Zhang, G.P., Wang, W.: On interface strengthening ability in metallic multilayers. Scripta Materialia 57, 117–120 (2007)CrossRefGoogle Scholar
  127. 127.
    Kim, C., Qadri, S.B., Scanlon, M.R., et al.: Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films 240, 52–55 (1994)CrossRefGoogle Scholar
  128. 128.
    Lu, Y.Y., Kotoka, R., Ligda, J.P., et al.: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia 63, 216–231 (2014)Google Scholar
  129. 129.
    Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger, Malabar (1992)Google Scholar
  130. 130.
    Wang, J., Hoagland, R.G., Misra, A.: Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J. Mater. Res. 23, 1009–1014 (2008)CrossRefGoogle Scholar
  131. 131.
    Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scripta Materialia 65, 1022–1025 (2011)Google Scholar
  132. 132.
    Zhang, G.P., Liu, Y., Wang, W., et al.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006)CrossRefGoogle Scholar
  133. 133.
    Li, Y.P., Tan, J., Zhang, G.P.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scripta Materialia 59, 1226–1229 (2008)CrossRefGoogle Scholar
  134. 134.
    Xie, J.Y., Huang, P., Wang, F., et al.: Shear banding behavior in nanoscale Al/W multilayers. Surf. Coat. Technol. 228, S593–S596 (2013)CrossRefGoogle Scholar
  135. 135.
    Li, Y.P., Zhu, X.F., Tan, J., et al.: Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89, 66–74 (2009)CrossRefGoogle Scholar
  136. 136.
    Bhattacharyya, D., Mara, N.A., Dickerson, P., et al.: Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 24, 1291–1302 (2009)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State-Key Laboratory for Mechanical Behavior of MaterialXi’an Jiaotong UniversityXi’anChina
  2. 2.State-Key Laboratory for Mechanical Structure Strength and VibrationXi’an Jiaotong UniversityXi’anChina

Personalised recommendations