Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 3, pp 292–302 | Cite as

A review of research on nanoparticulate flow undergoing coagulation

  • Jianzhong LinEmail author
  • Linlin Huo
Review Paper
  • 220 Downloads

Abstract

Nanoparticulate flows occur in a wide range of natural phenomena and engineering applications and, hence, have attracted much attention. The purpose of the present paper is to provide a review of the research conducted over the last decade. The research covered relates to the Brownian coagulation of monodisperse and polydisperse particles, the Taylor-series expansion method of moment, and nanoparticle distributions due to coagulation in pipe and channel flow, jet flow, and the mixing layer and in the process of flame synthesis and deposition.

Keywords

Nanoparticulate flow Coagulation Review 

Notes

Acknowledgments

The project was supported by the Major Program of the National Natural Science Foundation of China (Grant 11132008).

References

  1. 1.
    Uchowski, V.: Versuch einer mathematischen theorie der koagulation skinetik kollider losungen. Z. Phys. Chem. 92, 129–168 (1917)Google Scholar
  2. 2.
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  3. 3.
    Han, M.Y., Lee, H., Lawler, D.F., Choi, S.: Collision efficiency factor in Brownian coagulation (\(\alpha \)Br) including hydrodynamics and interparticle forces. Water Sci. Technol. 36, 69–75 (1997)CrossRefGoogle Scholar
  4. 4.
    Han, M.Y., Lee, H.: Collision efficiency factor in Brownian coagulation(\(\alpha \)Br): calculation and experimental verification. Colloids Surf. A 202, 23–31 (2002)CrossRefGoogle Scholar
  5. 5.
    Vanni, M., Baldi, G.: Coagulation efficiency of colloidal particles in shear flow. Adv. Colloid Interface Sci. 97, 151–177 (2002)CrossRefGoogle Scholar
  6. 6.
    Chin, C.J., Lu, S.C., Yiacoumi, S.: Fractal dimension of particle aggregates in magnetic fields. Sep. Sci. Technol. 39, 2839–2862 (2004)CrossRefGoogle Scholar
  7. 7.
    Olsen, A., Franks, G., Biggs, S.: An improved collision efficiency model for particle aggregation. J. Chem. Phys. 125, 184906 (2006)CrossRefGoogle Scholar
  8. 8.
    Chun, J., Koch, D.L.: The effects of non-continuum hydrodynamics on the Brownian coagulation of aerosol particles. J. Aerosol Sci. 37, 471–482 (2006)CrossRefGoogle Scholar
  9. 9.
    Feng, Y., Lin, J.Z.: The collision efficiency of spherical dioctyl phthalate aerosol particles in the Brownian coagulation. Chin. Phys. B 17, 4547–4553 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, Y.M., Lin, J.Z., Feng, Y.: The central oblique collision efficiency of spherical nanoparticles in the Brownian coagulation. Mod. Phys. Lett. B 24, 1523–1531 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chen, Z.L., You, Z.J.: New expression for collision efficiency of spherical nanoparticles in Brownian coagulation. Appl. Math. Mech (English Edition). 31, 851–860 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, Y.M., Lin, J.Z.: Attachment efficiency of polydisperse nanoparticles wall-deposition. KONA Powder Part. J. 29, 158–167 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y.Y., Li, S.Q., Yan, W., Yao, Q., Tse, S.D.: Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime. J. Chem. Phys. 134, 084501 (2011)CrossRefGoogle Scholar
  14. 14.
    Wang, Y.M., Lin, J.Z.: The oblique collision efficiency of nanoparticles at different angles in Brownian coagulation. Comput. Math. Appl. 61, 1917–1922 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, Z.L., Jiang, R.J., Ku, X.K.: Collision efficiency of brownian coagulation for nanoparticles taking into account the slip boundary condition on the particle surface. Mod. Phys. Lett. B 26, 1250135 (2012)CrossRefGoogle Scholar
  16. 16.
    Hawa, T., Zachariah, M.R.: Coalescence kinetics of unequal sized nanoparticles. J. Aerosol Sci. 37, 1–15 (2006)CrossRefGoogle Scholar
  17. 17.
    Wang, Y.M., Lin, J.Z.: Collision efficiency of two nanoparticles with different diameters in Brownian coagulation. Appl. Math. Mech. (English Edition). 32, 1019–1028 (2011)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kelkar, A.V., Dong, J.N., Franses, E.I., Corti, D.S.: New models and predictions for Brownian coagulation of non-interacting spheres. J. Colliod Interface Sci. 389, 188–198 (2013)CrossRefGoogle Scholar
  19. 19.
    Muller, H.: Zur Allgemeinen Theorie der Raschen Koagulation. Kolloideihefte 27, 223–250 (1928) (in German)Google Scholar
  20. 20.
    Friedlander, S.K.: Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. Wiley, New York (2000)Google Scholar
  21. 21.
    Allen, M.D., Raabe, O.G.: Slip correction measurement of spherical solid aerosol particles in an improved millican apparatus. Aerosol Sci. Technol. 4, 269–286 (1985)CrossRefGoogle Scholar
  22. 22.
    Fuchs, N.A.: The Mechanics of Aerosols. Pergamon, New York (1964)Google Scholar
  23. 23.
    Otto, E., Fissan, H., Park, S.H., Lee, K.W.: The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range: part II-analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci. 30, 17–34 (1999)CrossRefGoogle Scholar
  24. 24.
    Pratsinis, S.E.: Simultaneous nucleation, condensation, and coagulation in aerosol reactor. J. Colloid Interface Sci. 124, 416–417 (1988)CrossRefGoogle Scholar
  25. 25.
    Hulbert, H.M., Katz, S.: Some problems in particle technology: a statistical mechanical formulation. Chem. Eng. Sci. 19, 555–574 (1994)CrossRefGoogle Scholar
  26. 26.
    Lin, J.Z., Chan, T.L., Liu, S., Zhou, K., Zhou, Y., Lee, S.C.: Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. Int. J. Nonlinear Sci. Numer. Simul. 8, 45–54 (2007)CrossRefGoogle Scholar
  27. 27.
    Upadhyay, R.R., Ezekoye, O.A.: Evaluation of the 1-point quadrature approximation in QMOM for combined aerosol growth laws. J. Aerosol Sci. 34, 1665–1683 (2003)CrossRefGoogle Scholar
  28. 28.
    Pratsinis, S.E.: Receptor models for ambient carbonaceous aerosols. Aerosol Sci. Technol. 10, 258–266 (1989)CrossRefGoogle Scholar
  29. 29.
    Mcgraw, R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27, 255–265 (1997)CrossRefGoogle Scholar
  30. 30.
    Yu, M.Z., Lin, J.Z., Chan, T.L.: A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci. Technol. 42, 705–713 (2008)CrossRefGoogle Scholar
  31. 31.
    Lee, K.W., Chen, H.: Coagulation rate of polydisperse particles. Aerosol Sci. Technol. 3, 327–334 (1984)CrossRefGoogle Scholar
  32. 32.
    Yu, M.Z., Lin, J.Z.: Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model. Int. J. Heat Mass Transfer 53, 635–644 (2010)zbMATHCrossRefGoogle Scholar
  33. 33.
    Wang, W.X., He, Q., Chen, N.A., Xie, M.L.: A simple moment model to study the effect of diffusion on the coagulation of nanoparticles due to Brownian motion in the free molecule regime. Therm. Sci. 16, 1331–1338 (2012)CrossRefGoogle Scholar
  34. 34.
    Lin, J.Z., Chen, Z.L.: A modified TEMOM model for Brownian coagulation of nanoparticles based on the asymptotic solution of the sectional method. Sci. China Technol. Sci. 56, 3081–3092 (2013)CrossRefGoogle Scholar
  35. 35.
    Xie, M.L., He, Q.: The fundamental aspects of TEMOM model for particle coagulation due to Brownian motion. Part 1: in the free molecule regimes. Int. J. Heat Mass Transfer 70, 1115–1120 (2014)CrossRefGoogle Scholar
  36. 36.
    Chen, Z.L., Lin, J.Z., Yu, M.Z.: Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime. J. Aerosol Sci. 67, 28–37 (2014)CrossRefGoogle Scholar
  37. 37.
    De Bleecker, K., Bogaerts, A., Goedheer, W.: Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges. New J. Phys. 8, 178–181 (2006)CrossRefGoogle Scholar
  38. 38.
    Yin, Z.Q., Lou, M.: Experimental study on nanoparticle deposition in straight pipe flow. Therm. Sci. 16, 1410–1413 (2012)CrossRefGoogle Scholar
  39. 39.
    Lin, J.Z., Liu, S., Chan, T.L.: Nanoparticle migration in a fully developed turbulent pipe flow considering the particle coagulation. Chin. J. Chem. Eng. 20, 679–685 (2012)CrossRefGoogle Scholar
  40. 40.
    Lin, J.Z., Yin, Z.Q., Gan, F.J., Yu, M.Z.: Penetration efficiency and distribution of aerosol particles in turbulent pipe flow undergoing coagulation and breakage. Int. J. Multiph. Flow 61, 28–36 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Lin, P.F., Lin, J.Z.: Transport and deposition of nanoparticles in bend tube with circular cross-section. Prog. Nat. Sci. 19, 33–39 (2009)CrossRefGoogle Scholar
  42. 42.
    Lin, P.F., Lin, J.Z.: Prediction of nanoparticle transport and deposition in bends. Appl. Math. Mech. (English Edition). 30, 957–968 (2009)zbMATHCrossRefGoogle Scholar
  43. 43.
    Lin, J.Z., Lin, P.F., Yu, M.Z., Chen, H.J.: Nanoparticle transport and coagulation in bends of circular cross section via a new moment method. Chin. J. Chem. Eng. 18, 1–9 (2010)CrossRefGoogle Scholar
  44. 44.
    Lin, J.Z., Lin, P.F., Chen, H.J.: Research on the transport and deposition of nanoparticles in a rotating curved pipe. Phys. Fluids 21, 122001 (2009)CrossRefGoogle Scholar
  45. 45.
    Lin, J.Z., Lin, P.F., Chen, H.J.: Nanoparticle distribution in a rotating curved pipe considering coagulation and dispersion. Sci. China Phys. Mech. Astron. 54, 1502–1513 (2011)CrossRefGoogle Scholar
  46. 46.
    Chan, T.L., Lin, J.Z., Zhou, K., Chan, C.K.: Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet. J. Aerosol Sci. 37, 1545–1561 (2006)CrossRefGoogle Scholar
  47. 47.
    Lin, J.Z., Chan, T.L., Liu, S., Zhou, Y., Lee, S.C.: Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. Int. J. Nonlinear Sci. Numer. Simul. 8, 45–54 (2007)CrossRefGoogle Scholar
  48. 48.
    Yin, Z.Q., Lin, J.Z., Zhou, K., Chan, T.L.: Numerical simulation of the formation of pollutant nanoparticles in the exhaust twin-jet plume of a moving car. Int. J. Nonlinear Sci. Numer. Simul. 8, 535–543 (2007)CrossRefGoogle Scholar
  49. 49.
    Yin, Z.Q., Lin, J.Z.: Numerical simulation of the formation of nanoparticles in an impinging twin-jet. J. Hydrodyn. 19, 533–541 (2007)CrossRefGoogle Scholar
  50. 50.
    Fujitani, Y., Hirano, S., Kobayashi, S., Tanabe, K., Suzuki, A., Furuyama, A., Kobayashi, T.: Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhalation Toxicol. 21, 200–209 (2009)CrossRefGoogle Scholar
  51. 51.
    Chan, T.L., Zhou, K., Lin, J.Z., Liu, C.H.: Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region. Int. J. Nonlinear Sci. Numer. Simul. 11, 581–593 (2010)CrossRefGoogle Scholar
  52. 52.
    Zhu, J.Z., Qi, H.Y., Wang, J.S.: Nanoparticle dispersion and coagulation in a turbulent round jet. Int. J. Multiph. Flow 54, 22–30 (2013)CrossRefGoogle Scholar
  53. 53.
    Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L.: Large eddy simulation of a planar jet flow with nanoparticle coagulation. Acta Mech. Sin. 22, 293–300 (2006)zbMATHCrossRefGoogle Scholar
  54. 54.
    Yu, M.Z., Lin, J.Z., Chen, L.H.: Nanoparticle coagulation in a planar jet via moment method. Appl. Math. Mech. (English Edition). 28, 1445–1453 (2007)zbMATHCrossRefGoogle Scholar
  55. 55.
    Lu, Y.H.: Nanoparticle nucleation and coagulation in a submerged jet: theoretical prediction and simulation. Int. J. Nonlinear Sci. Numer. Simul. 10, 1189–1200 (2009)CrossRefGoogle Scholar
  56. 56.
    Das, S., Garrick, S.C.: The effects of turbulence on nanoparticle growth in turbulent reacting jets. Phys. Fluids 22, 103303 (2010)CrossRefGoogle Scholar
  57. 57.
    Loeffler, J., Das, S., Garrick, S.C.: Large eddy simulation of titanium dioxide nanoparticle formation and growth in turbulent jets. Aerosol Sci. Technol. 45, 616–628 (2011)CrossRefGoogle Scholar
  58. 58.
    Garrick, S.C., Wang, G.H.: Modeling and simulation of titanium dioxide nanoparticle synthesis with finite-rate sintering in planar jets. J. Nanopart. Res. 13, 973–984 (2011)CrossRefGoogle Scholar
  59. 59.
    Settumba, N., Garrick, S.C.: Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. J. Aerosol Sci. 34, 149–167 (2003)CrossRefGoogle Scholar
  60. 60.
    Settumba, N., Garrick, S.C.: A comparison of diffusive transport in a moment method for nanoparticle coagulation. J. Aerosol Sci. 35, 93–101 (2004)CrossRefGoogle Scholar
  61. 61.
    Garrick, S.C., Lehtinen, K.E.J., Zachariah, M.R.: Nanoparticle coagulation via a Navier–Stokes/nodal methodology: evolution of the particle field. J. Aerosol Sci. 37, 555–576 (2006)CrossRefGoogle Scholar
  62. 62.
    Wang, G.H., Garrick, S.C.: Modeling and simulation of titania formation and growth in temporal mixing layers. J. Aerosol Sci. 37, 431–451 (2006)CrossRefGoogle Scholar
  63. 63.
    Lin, J.Z., Liu, Y.H.: Nanoparticle nucleation and coagulation in a mixing layer. Acta Mech. Sin. 26, 521–529 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    Xie, M.L., Yu, M.Z., Wang, L.P.: A TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation. J. Aerosol Sci. 54, 32–48 (2012)CrossRefGoogle Scholar
  65. 65.
    Rosner, D.E., Pyykonen, J.J.: Bivariate moment simulation of coagulating and sintering nanoparticles in flames. AIChE J. 48, 476–491 (2002)CrossRefGoogle Scholar
  66. 66.
    Kim, H.J., Jeong, J.I., Park, Y.: Modeling of generation and growth of non-spherical nanoparticles in a co-flow flame. J. Nanopart. Res. 5, 237–246 (2003)CrossRefGoogle Scholar
  67. 67.
    Tsantilis, S., Pratsinis, S.E.: Narrowing the size distribution of aerosol-made titania by surface growth and coagulation. J. Aerosol Sci. 35, 405–420 (2004)CrossRefGoogle Scholar
  68. 68.
    Kostoglou, M., Konstandopoulos, A.G., Friedlander, S.K.: Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring. J. Aerosol Sci. 37, 1102–1115 (2006)CrossRefGoogle Scholar
  69. 69.
    Morgan, N.M., Wells, C.G., Goodson, M.J., Kraft, M., Wagner, W.: A new numerical approach for the simulation of the growth of inorganic nanoparticles. J. Comput. Phys. 211, 638–658 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  70. 70.
    Morgan, N., Kraft, M., Balthasar, M., Wong, D., Frenklach, M., Mitchell, P.: Numerical simulations of soot aggregation in premixed laminar flames. Proc. Combust. Inst. 31, 693–700 (2007)CrossRefGoogle Scholar
  71. 71.
    Starchenko, V., Muller, M., Lebovka, N.: Growth of polyelectrolyte complex nanoparticles: computer simulations and experiments. J. Phys. Chem. C 112, 8863–8869 (2008)CrossRefGoogle Scholar
  72. 72.
    Yu, M.Z., Lin, J.Z., Chen, L.H., Chan, T.L.: Effect of precursor loading on non-spherical \(\text{ TiO }_{2}\) nanoparticle synthesis in a diffusion flame reactor. Chem. Eng. Sci. 63, 2317–2329 (2008)CrossRefGoogle Scholar
  73. 73.
    Yu, M.Z., Lin, J.Z., Chan, T.L.: Numerical simulation of nanoparticle synthesis in diffusion flame reactor. Powder Technol. 181, 9–20 (2008)Google Scholar
  74. 74.
    Aristizabal, F., Munz, R.J., Berk, D.: Turbulent modeling of the production of ultra fine aluminum particles: scale-up. Aerosol Sci. Technol. 42, 556–565 (2008)CrossRefGoogle Scholar
  75. 75.
    Zhao, H., Liu, X.F., Tse, S.D.: Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles. J. Aerosol Sci. 40, 919–937 (2009)CrossRefGoogle Scholar
  76. 76.
    De Filippo, A., Sgro, L.A., Lanzuolo, G., D’Alessio, A.: Probe measurements and numerical model predictions of evolving size distributions in premixed flames. Combust. Flame 156, 1744–1754 (2009)CrossRefGoogle Scholar
  77. 77.
    Chen, K.L., Elimelech, M.: Aggregation and deposition kinetics of fullerene (c-60) nanoparticles. Langmuir 22, 10994–11001 (2006)CrossRefGoogle Scholar
  78. 78.
    Kim, D.S., Hong, S.B., Kim, Y.J., Lee, K.W.: Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence. J. Aerosol Sci. 37, 1781–1787 (2006)CrossRefGoogle Scholar
  79. 79.
    Liu, N., Liu, C.L., Zhang, J., Lin, D.H.: Removal of dispersant-stabilized carbon nanotubes by regular coagulants. J. Environ. Sci. 24, 1364–1370 (2012)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Fluid Measurement and SimulationChina Jiliang UniversityHangzhouChina
  2. 2.Institute of Fluid EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations