Skip to main content
Log in

A novel robust design method for improving stability of optimized structures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

It is known that structural optimization may lead to designs of structures having low stability and sometimes even kinematically unstable designs. This paper presents a robust design method for improving the stability of optimized structures. A new approach is proposed, in which certain perturbation loads are introduced and the corresponding compliance is added to the objective function as a penalization. The stability of the optimized structures can thus be improved substantially by considering structural responses to the original and the introduced loads. Numerical examples show the simplicity and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer Verlag, Berlin (2003)

    Google Scholar 

  2. Luh, G.C., Lin, C.Y.: Optimal design of truss-structures using particle swarm optimization. Comp. & Struct. 89, 2221–2232 (2011)

    Article  Google Scholar 

  3. Victoria, M., Querin, O.M., Marti, P.: Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces. Finite Elem. Anal. Des. 46, 229–237 (2010)

    Article  Google Scholar 

  4. Yetis, F.A., Saitou, K.: Decomposition-based assembly synthesis based on structural considerations. J. Mech. Des. 124, 593–601 (2002)

    Article  Google Scholar 

  5. Achtziger, W.: Local stability of trusses in the context of topology optimization, part I: Exact modelling. Struct. Optim. 17, 235–246 (1999)

    Google Scholar 

  6. Achtziger, W.: Local stability of trusses in the context of topology optimization part II: A numerical approach. Struct. Optim. 17, 247–258 (1999)

    Google Scholar 

  7. Cheng, G., Guo, X.: Investigation of truss topology optimization under local buckling constraints. J. Dalian Univ. Tech. 35, 770–775 (1995) (in Chinese)

    MATH  Google Scholar 

  8. Kocvara, M.: On the modelling and solving of the truss design problem with global stability constraints. Struct. Multidisc. Optim. 23, 189–203 (2002)

    Article  Google Scholar 

  9. Folgado, J., Rodrigues, H.: Structural optimization with a nonsmooth buckling load criterion. Cont. Cybernet. 27, 235–254 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Rahmatalla, S., Swan, C.C.: Continuum topology optimization of buckling-sensitive structures. AIAA J. 41, 1180–1189 (2003)

    Article  Google Scholar 

  11. Neves, M.M., Rodrigues, H., Guedes J.M.: Generalized topology design of structures with a buckling load criterion. Struct. Optim. 10, 71–78 (1995)

    Article  Google Scholar 

  12. Zhou, M.: Difficulties in truss topology optimization with stress and local buckling constraints. Struct. Optim. 11, 134–136 (1996)

    Article  Google Scholar 

  13. Rozvany, G.I.N.: Difficulties in truss topology optimization with stress, local buckling and system stability constraints. Struct. Optim. 11, 213–217 (1996)

    Article  Google Scholar 

  14. Doltsinis, I., Kang, Z.: Robust design of structures using optimization methods. Comput. Methods Appl. Mech. Engrg. 193, 2221–2237 (2004)

    Article  MATH  Google Scholar 

  15. Guest, J.K., Igusa, T.: Structural optimization under uncertainty loads and nodal locations. Comput. Methods Appl. Mech. Eng. 198, 116–124 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jalalpour, M., Igusa, T., Guest, J.K.: Optimal design of trusses with geometric imperfections: Accounting for global instability. Int. J. Solids Struct. 48, 3011–3019 (2011)

    Article  Google Scholar 

  17. Rozvany, G.I.N., Maute, K.: Analytical and numerical solutions for a reliability-based benchmark example. Struct. Multidisc. Optim. 43, 745–753 (2011)

    Article  MATH  Google Scholar 

  18. Rozvany, G.I.N., Maute, K.: Critical examination of recent assertions by Logo (2013) about the paper ‘Analytical and numerical solutions for a reliability based benchmark example’ (Rozvany and Maute 2011). Struct. Multidisc. Optim. 48, 1213–1220 (2013)

    Google Scholar 

  19. Schevenels, M., Lazarov, B.S., Sigmund, O.: Robust topology optimization accounting for spatially varying manufacturing errors. Comput. Methods Appl. Mech. Eng. 200, 3613–3627 (2011)

    Article  MATH  Google Scholar 

  20. Jansen, M., Lombaert, G., Diehl, M., et al.: Robust topology optimization accounting for misplacement of material. Struct. Multidisc. Optim. 47, 317–333 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Takezawa, A., Nii, S., Kitamura, M., et al.: Topology optimization for worst load conditions based on the eigenvalue analysis. Comput. Methods Appl. Mech. Eng. 200, 2268–2281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Su, W., Zhang, Y., Liu, S.T.: Topology optimization for geometric stability of structures with compensation displacements. Chinese J. Theor. Appl. Mecha. 45, 214–222 (2013) (in Chinese)

    Google Scholar 

  23. Luo, Z., Chen, L.P., Yang, J.Z., et al.: Fuzzy tolerance multilevel approach for structural topology optimization. Comp. & Struct. 84, 127–140 (2006)

    Article  MathSciNet  Google Scholar 

  24. Luo, Y.J., Kang, Z., Luo, Z., et al.: Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct. Multidisc. Optim. 39, 297–310 (2009)

    Article  MathSciNet  Google Scholar 

  25. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12, 555–573 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidisc. Optim. 21, 120–127 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Tao Ma.

Additional information

The project was supported by State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China (GZ1305) and the National Natural Science Foundation of China (11002058 and 11372004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, MJ., Ma, HT. & Wei, P. A novel robust design method for improving stability of optimized structures. Acta Mech Sin 31, 104–111 (2015). https://doi.org/10.1007/s10409-015-0007-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0007-7

Keywords

Navigation