Skip to main content
Log in

An experimental research on surface oscillation of buoyant-thermocapillary convection in open cylindrical annuli

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An experiment is carried out on the surface oscillation of buoyant-thermocapillary convection in an open cylindrical annulus. When the radial temperature difference ΔT reaches a critical value ΔT c, a regular oscillation appears and soon disappears on the open surface, which varies when the liquid layer’s thickness h and temperature difference ΔT are varied. With growth of ΔT, dominant frequency of the visible oscillation will grow too but is found within certain frequencies. Driving forces, buoyance and thermocapillarity, are responsible for this phenomanon and the “balance” point is considered to exist when h is between 4.5–5.0mm. Surface oscillation region is also found restricted within a narrow gap when Bo is smaller than 3.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

h :

Layer thickness, mm

d :

Depth of cylindrical annuli, mm

R o :

Outer radius of the cylindrical annuli, mm

R i :

Inner radius of the cylindrical annuli, mm

Hr :

Heat ratio, \(Hr = \frac{{R_i }} {{R_o }} \)

A :

Aspect ratio, \(A = \frac{h} {{R_o - R_i }} \)

ΔT :

Temperature difference, °C

ΔT c :

Critical temperature difference, °C

ν:

Kinematic viscosity, m2/s

α:

Thermal diffusivity, m2/s

µ:

Dynamic viscosity, kg/(m·s)

γ T :

Temperature derivative of surface tension, N/(m·°C)

β :

Volume expansion coefficient

ρ :

Density, kg/m3

g :

Normal earth gravity, m/s2

Pr :

Prandtl number, \(Pr = \frac{v} {\alpha } \)

Ma :

Marangoni number, \(Ma = \gamma _T \frac{{\Delta Th}} {{\mu \alpha }} \)

Ra :

Rayleigh number, \(Ra = \frac{{g\beta h^3 \Delta T}} {{\alpha v}} \)

Bo :

Bond number, \(Bo = \frac{{\rho g\beta h^2 }} {{\gamma _T }} \)

References

  1. Yang, Y.K., Kou, S.: Temperature oscillation in a tin liquid bridge and critical Marangoni number dependency on Prandtl number. Journal of Crystal Growth 222, 135–143 (2001)

    Article  Google Scholar 

  2. Duan, L., Kang, Q., Hu, W.R.: Characters of surface deformation and surface wave in thermal capillary convection. Science in China Series E: Technological Sciences 49, 601–610 (2006)

    Article  Google Scholar 

  3. Hu, W.R., Xu, C.S.: Microgravity Fluid Mechanics. Science Publishing House, Beijing (1999)

    Google Scholar 

  4. Benz, S., Schwabe, D.: The three-dimensional stationary instability in dynamic thermocapillary shallow cavities. Experiments in Fluids 31, 409–416 (2001)

    Article  Google Scholar 

  5. Schwabe, D.: Buoyant-thermocapillary and pure thermocapillary convective instabilities in Czochralski systems. J. Crystal Growth 237–239, 1849–1853 (2002)

    Article  Google Scholar 

  6. Schwabe, D., Zebib, A., Sim, B.C.: Oscillatory thermocapillary convection in open cylindrical annuli. I. Experiments under microgravity. J. Fluid Mech. 491, 239–258 (2003)

    Article  MATH  Google Scholar 

  7. Schwabe, D., Möller, U., Schneider, J., et al.: Instabilities of shallow dynamic thermocapillary liquid layers. Phys. Fluids A 4, 1989–1993 (1992)

    Article  Google Scholar 

  8. Mizev, A.I., Schwabe, D.: Convective instabilities in liquid layers with free upper surface under the action of an inclined temperature gradient. Physics of Fluids 21, 112102 (2009)

    Article  Google Scholar 

  9. Shi, W.Y., Li, Y.R., Peng, L., et al.: Imaishi: Intrinsical characters of hydrothermal waves in shallow cylindrical annuli. Chinese Journal of Computational Mechanics 26, 59–65 (2009) (in Chinese)

    Google Scholar 

  10. Li, Y.R., Wang, S.C., Shi, W.Y., et al.: Approximate solution to double thin fluid layers thermocapillary convection in cylindrical annuli. Chinese Journal of Theoretical and Applied Mechanics 42, 306–311 (2010) (in Chinese)

    Google Scholar 

  11. Peng, L., Li, Y.R., Zeng, D.L.: Imaishi: Buoyant-thermocapillary convection in cylindrical annuli with medium Pr fluid. Acta Mechanica Sinica 37, 266–271 (2005) (in Chinese)

    Google Scholar 

  12. Peng, L., Li, Y.R., Shi, W.Y., et al.: Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool. International Journal of Heat and Mass Transfer 50, 872–880 (2007)

    Article  MATH  Google Scholar 

  13. Shi, W.Y., Li, G.Y., Liu, X., et al.: Thermocapillary convection and buoyant-thermocapillary convection in the annular pools of silicon melt and silicone oil. J. Supercond. Nov. Magn. 23, 1169–1172 (2010)

    Article  Google Scholar 

  14. Leppinen, M.D.: Natural convection in a shallow cylindrical annuli. International Journal of Heat and Mass Transfer 45, 2967–2981 (2002)

    Article  MATH  Google Scholar 

  15. Kang, Q., Duan, L., Hu, W.R.: Experimental study of surface deformation and flow pattern on buoyant-thermocapillary convection. Microgravity Sci. Technol. XV/2, 18–24 (2004)

    Article  Google Scholar 

  16. Duan, L., Kang, Q., Sun, Z.W., et al.: The real-time Mach-Zehnder interferometer used in space experiment. Microgravity Sci. Technol. 20, 91–98 (2008)

    Article  Google Scholar 

  17. Duan, L., Kang, Q., Hu, W.R.: Experimental study on liquid free surface in buoyant-thermocapillary convection. Chin. Phys. Lett. 25, 1347–1350 (2008)

    Article  Google Scholar 

  18. Zhu, P., Zhou, B., Duan, L., et al.: Characteristics of surface oscillation in thermocapillary convection. Experimental Thermal and Fluid Science 35, 1444–1450 (2011)

    Article  Google Scholar 

  19. Mo, D.M., Li, Y.R., Shi, W.Y.: Linear-stability analysis of thermocapillary flow in an annular two-layer system with upper rigid wall. Microgravity Sci. Technol. 23, S43–S48 (2011)

    Article  Google Scholar 

  20. Hoyas, S., Herrero, H., Mancho, A.M.: Thermocapillary and thermogravitatory waves in a convection problem. Theoret. Comput. Fluid Dynamics 18, 309–321 (2004)

    Article  MATH  Google Scholar 

  21. Bauer, H.F., Eidel, W.: Thermocapillary convection in an annular cylindrical container. Heat Mass Transfer 43, 217–232 (2007)

    Article  Google Scholar 

  22. Kamotani, Y., Masud, J., Pline, A.: Oscillatory convection due to combined buoyancy and thermocapillarity. Journal of Thermophysics and Heat Transfer 10, 102–108 (1996)

    Article  Google Scholar 

  23. Kamotani, Y., Ostrach, S., Masud, J.: Microgravity experiments and analysis of oscillatory thermocapillary flows in cylindrical containers. J. Fluid Mech. 410, 211–233 (2000)

    Article  MATH  Google Scholar 

  24. Kamotani, Y., Ostrach, S., Pline, A.: Analysis of velocity data taken in surface tension driven convection experiment in microgravity. Phys. Fluids 6, 3601–3609 (1994)

    Article  Google Scholar 

  25. Kamotani, Y., Ostrach, S., Pline, A.: A thermocapillary convection experiment in microgravity. Journal of Heat Transfer 117, 611–618 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Kang.

Additional information

The project was supported by the National Natural Science Foundation of China (11032011 and 10972224) and Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-L08).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Duan, L. & Kang, Q. An experimental research on surface oscillation of buoyant-thermocapillary convection in open cylindrical annuli. Acta Mech Sin 30, 681–686 (2014). https://doi.org/10.1007/s10409-014-0073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0073-2

Keywords

Navigation