Skip to main content
Log in

Highly reliable bipolar resistive switching in sol-gel derived lanthanum-doped PbTiO3 thin film: Coupling with ferroelectricity?

  • Research Paper
  • Solid Mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nanoscale Pb x La1−x Ti1−x/4O3 (PLT) thin film has been fabricated on Pt\Ti\SiO2\Si substrates by chemical solution deposition (CSD) method. Ferroelectricity of the fresh-made PLT thin film has been clearly detected through piezoelectric force microscopy (PFM) by writing reversible ferroelectric domains. However, PLT thin film also shows off-standard ferroelectric hysteresis loops highly dependent on frequency, indicating large amount of mobile space charges in the film. Subsequent current-voltage (C-V) studies show that sandwich-like Pt\PLT\Pt structure exhibits notable bipolar resistive switching (BRS) characteristics with high stability (> 103 switching cycles). It is found that the C-V curves of both high- and low-resistance states have the feature of space-charge-limited current (SCLC) conduction, indicating important roles of defects in the conduction. X-ray photoelectron spectroscopy measurement further verifies that oxygen vacancies based conductive filament mechanism is likely responsible for the observed RS effect. Our demonstration of stable RS effect in the PLT thin film and its possible coupling with ferroelectricity is promising in device development and applications, such as development of ferroelectric-tunable RS memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X., Li, X., Gao, X., et al.: All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature. J. Phys. D: Appl. Phys. 44, 255104 (2011)

    Article  Google Scholar 

  2. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  3. Ielmini, D., Nardi, F., Cagli, C.: Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22, 254022 (2011)

    Article  Google Scholar 

  4. Choi, T., Lee, S., Choi, Y. J., et al.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009)

    Article  Google Scholar 

  5. Jiang, A.Q., Wang, C., Jin, K.J., et al.: A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23, 1277–1281 (2011)

    Article  Google Scholar 

  6. Choi, J., Kim, J.S., Hwang, I., et al.: Different nonvolatile memory effects in epitaxial Pt/PbZr0.3Ti0.7O0.3/LSCO heterostructures. Appl. Phys. Lett. 96, 262113 (2010)

    Article  Google Scholar 

  7. Scott, J.C., Bozano, L.D.: Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452–1463 (2007)

    Article  Google Scholar 

  8. Waser, R., Dittmann, R., Staikov, G., et al.: Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Advanced Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  9. Yang, C.H., Seidel, J., Kim, S.Y., et al.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Mater. 8, 485–493 (2009)

    Article  Google Scholar 

  10. Valov, I., Waser, R., Jameson, J.R., et al.: Electrochemical metallization memories-Fundamentals, applications, prospects. Nanotechnoledge 22, 254003 (2011)

    Article  Google Scholar 

  11. Muenstermann, R., Menke, T., Dittmann, R., et al.: Correlation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films. J. Appl. Phys. 108, 124504 (2010)

    Article  Google Scholar 

  12. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  13. Luo, J.M., Lin, S.P., Zheng, Y., et al.: Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition. Appl. Phys. Lett. 101, 062902 (2012)

    Article  Google Scholar 

  14. Zheng, Y., Woo, C.H.: Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009)

    Article  Google Scholar 

  15. Luo, X., Wang, B., Zheng, Y.: Tunable tunneling electroresistance in ferroelectric tunnel junctions by mechanical loads. ACS Nano 5, 1649–1656 (2011)

    Article  Google Scholar 

  16. Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998)

    Article  Google Scholar 

  17. Ramesh, R., Aggarwal, S., Auciello, O.: Science and technology of ferroelectric films and hetrostructures for non-volatile ferroelectric memories. Materials Sci. Eng. 32, 191–236 (2001)

    Article  Google Scholar 

  18. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. Journal of Micromechanics and Microengineering 10, 136 (2000)

    Article  Google Scholar 

  19. Singh, R., Chandra, S.: Sol-Gel derived La modified PZT thin films: Structure and properties. Dielectrics and Electrical Insulation. 11, 264–270 (2004)

    Article  Google Scholar 

  20. Paz de Araujo, C.A., Cuchiaro, J.D., MeMillan, L.D., et al.: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1994)

    Article  Google Scholar 

  21. Kwon, S.Y., Bae, J.I.: Pyroelectric properties of PbTiO3/ P(VDF-TrFE) 0–3 nanocomposite films. Industrial Electronics, 2004 IEEE International Symposium 1, 55–57 (1998)

    Google Scholar 

  22. Majumder, S.B., Bhaskar, S., Dobal, P.S., et al.: Investigations on sol-gel derived lanthanum doped lead titanate (PLT) films. Integrated Ferroelectrics 23, 127–148 (1999)

    Article  Google Scholar 

  23. Hur, C.H., Han, K.B., Jeon, K.A., et al.: Enhancement of the dielectric properties of Pb(La,Ti)O3 thin films fabricated by pulsed laser deposition. Thin Solid Films 400, 169–171 (2001)

    Article  Google Scholar 

  24. Roy, S., Majumder, S.B.: Recent advances in multiferroic thin films and composites. Journal of Alloys and Compounds 538, 153–159 (2012)

    Article  Google Scholar 

  25. Zhu, J., Wu, J., Xiao, D.: Growth and characterization of (Pb, La)TiO3 films with and without a special buffer layer prepared by RF magnetron sputtering. Materials Letters 61, 937–941 (2007)

    Article  Google Scholar 

  26. Song, Z.T., W, H.L., Chan, C.L., et al.: Dielectric and ferroelectric properties of in-plane lead lanthanum titanate thin films. Microelectronic Engineering 66, 887–890 (2003)

    Article  Google Scholar 

  27. Song, Z., Ren, W., Fu, X., et al: Influence of Pb excess on the properties of lead lanthanum titanate ferroelectric thin films on Pt and LaNiO3 electrodes. J. Phys.: Condens. Matter 13, 155 (2001)

    Article  Google Scholar 

  28. Koo, J., No, K., SooBae, B.: Synthesis and characterization of highly oriented Sol-Gel (Pb, La) TiO3 thin film optical waveguides. Journal of Sol-Gel Science and Technology 13, 869–870 (1998)

    Article  Google Scholar 

  29. Di, W., Li, A.D., Ge, C.Z., et al.: Raman spectroscopy and Xray diffraction study of sol-gel derived (Pb1−x Lax)Ti1−x /4O3 thin films on Si substrates. Thin Solid Films 322, 323–328 (1998)

    Article  Google Scholar 

  30. Lamb, D.R.: Electric Conduction Mechanisms in Thin Insulating Films. Methuen, London (1967)

    Google Scholar 

  31. Hamann, C., Burghardt, H., Frauenheim, T.: Electrical ConductionMechanisms in Solids. VEB Deutscher Verlag der Wissenschaften, Berlin (1988)

    Google Scholar 

  32. Shirley, D.A.: High resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714 (1972)

    Article  Google Scholar 

  33. Bhaskar, S., Majumder, S.B., Fachini, E.R., et al.: Influence of precursor solutions on the ferroelectric properties of Sol-Gel-derived lanthanum-modified lead titanate (PLT) thin films. Journal of the American Ceramic Society 87, 384–390 (2004)

    Article  Google Scholar 

  34. Chen, H.Y., Lin, J., Tan, K.L., et al.: Characterization of lead lanthanum titanate thin films grown on fused quartz using MOCVD. Thin Solid Films 289, 59–64 (1996)

    Article  Google Scholar 

  35. Bogle, K.A., Bachhav, M.N., Deo, M.S., et al.: Enhanced nonvolatile resistive switching in dilutely cobalt doped TiO2. Appl. Phys. Lett. 95, 203502 (2009)

    Article  Google Scholar 

  36. Wakiya, N., Kuroyanagi, K., Xuan, Y., et al.: An XPS study of the nucleation and growth behavior of an epitaxial Pb(Zr,Ti)O3/MgO (100) thin film prepared by MOCVD. Thin Solid Films 372, 156–162 (2000)

    Article  Google Scholar 

  37. Zheng, Z., Yuan, Y., Waclawik, E.R., et al.: Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies. Chemistry 16, 1202–1211 (2010)

    Article  Google Scholar 

  38. Ma, W.J., Lin, S.P., Luo, J.M., et al.: Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 ferroelectric multilayer. Appl. Phys. Lett. 103, 262903 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Wang or Yue Zheng.

Additional information

The project was supported by the National Natural Science Foundation of China (51172291, 11232015, and 11302267), the Fundamental Research Funds for the Central Universities, NCET in University, Research Fund for the Doctoral Program of Higher Education, Fok Ying Tung Foundation, Science and Technology Innovation Project of Guangdong Provincial Education Department, and Guangdong Natural Science Funds for Distinguished Young Scholar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, WJ., Zhang, XY. et al. Highly reliable bipolar resistive switching in sol-gel derived lanthanum-doped PbTiO3 thin film: Coupling with ferroelectricity?. Acta Mech Sin 30, 526–532 (2014). https://doi.org/10.1007/s10409-014-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0057-2

Keywords

Navigation