Skip to main content
Log in

Multidimensional modeling of the stenosed carotid artery: A novel CAD approach accompanied by an extensive lumped model

  • Research Paper
  • Bio-mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This study describes a multidimensional 3D/lumped parameter (LP) model which contains appropriate inflow/outflow boundary conditions in order to model the entire human arterial trees. A new extensive LP model of the entire arterial network (48 arteries) was developed including the effect of vessel diameter tapering and the parameterization of resistance, conductor and inductor variables. A computer aided-design (CAD) algorithm was proposed to efficiently handle the coupling of two or more 3D models with the LP model, and substantially lessen the coupling processing time. Realistic boundary conditions and Navier-Stokes equations in healthy and stenosed models of carotid artery bifurcation (CAB) were used to investigate the unsteady Newtonian blood flow velocity distribution in the internal carotid artery (ICA). The present simulation results agree well with previous experimental and numerical studies. The outcomes of a pure LP model and those of the coupled 3D healthy model were found to be nearly the same in both cases. Concerning the various analyzed 3D zones, the stenosis growth in the ICA was not found as a crucial factor in determining the absorbing boundary conditions. This paper demonstrates the advantages of coupling local and systemic models to comprehend physiological diseases of the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alastruey, J., Parker, K.H., Peiró, J., et al.: Analysing the pattern of pulse waves in arterial networks: A time-domain study. J. Eng. Math. 64, 331–351 (2009)

    Article  MATH  Google Scholar 

  2. Alastruey, J.: On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis. Cardiovasc. Eng. 10, 176–189 (2010)

    Article  Google Scholar 

  3. Avolio, A.P.: Multi-branched model of the human arterial system. J. Med. Biol. Eng. Comput. 18, 709–718 (1980)

    Article  Google Scholar 

  4. Azer, K.: A one-dimensional model of blood flow in arteries with friction, convection and unsteady taylor diffusion based on the womersley velocity profile, [Ph.D. Thesis]. New York University, New York (2006)

    Google Scholar 

  5. Formaggia, L., Lamponi, D., Quarteroni, A.: One-dimensional models for blood flow in arteries. J. Eng. Math. 47, 251–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Formaggia, L., Lamponi, D., Tuveri, M., et al.: Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Engin. 9, 273–288 (2006)

    Article  Google Scholar 

  7. Hassani, K., Navidbakhsh, M., Rostami, M.: Simulation of aorta artery aneurysms using active electronic circuit. Am. J. Apll. Sci. 4, 203–210 (2007)

    Article  Google Scholar 

  8. Johnson, D.A., Rose, W.C., Edwards, J.W., et al.: Application of 1D blood flow models of the human arterial network to differential pressure predictions. J. Biomech. 44, 869–876 (2011)

    Article  Google Scholar 

  9. Lee, T.C., Huang, K.F., Hsiao, M.L., et al.: Electrical lumped model for arterial vessel beds. J. Comput. Methods Programs Biomed. 73, 209–219 (2004)

    Article  Google Scholar 

  10. Reymond, P., Merenda, F., Perren, F., et al.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297, 208–222 (2009)

    Article  Google Scholar 

  11. Sherwin, S.J., Franke, V., Peiró, J., et al.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)

    Article  MATH  Google Scholar 

  12. Steele, B.N., Wan, J., Ku, J.P., et al.: In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans. Biomed. Eng. 50, 649–656 (2003)

    Article  Google Scholar 

  13. Steele, B.N., Olufsen, M.S., Taylor, C.A.: Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Engin. 10, 39–51 (2007)

    Article  Google Scholar 

  14. Chen, J., Wang, S., Ding, G., et al.: The effect of aneurismal-wall mechanical properties on patient-specific hemodynamic simulations: two clinical case reports. Acta Mech. Sin. 25, 677–688 (2009)

    Article  MATH  Google Scholar 

  15. Johnston, B.M., Johnston, P.R., Corney, S., et al.: Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39, 1116–1128 (2006)

    Article  Google Scholar 

  16. Morbiducci, U., Gallo, D., Massai, D., et al.: On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J. Biomech. 44, 2427–2438 (2011)

    Article  Google Scholar 

  17. Shahcheraghi, N., Dwyer, H.A., Cheer, H.A., et al.: Unsteady and three-dimensional simulation of blood flow in the human aortic archaortic arch. J. Biomech. Eng. 124, 378–387 (2002)

    Article  Google Scholar 

  18. Sheidaei, A., Hunley, S.C., Zeinali-Davarani, S., et al.: Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. J. Med. Eng. Phys. 33, 80–88 (2011)

    Article  Google Scholar 

  19. Tada, S., Tarbell, J.M.: A Computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress. Ann. Biomed. Eng. 33, 1202–1212 (2005)

    Article  Google Scholar 

  20. Vincent, P.E., Plata, A.M., Hunt, A.A.E., et al.: Blood flow in the rabbit aortic arch and descending thoracic aorta. J. R. Soc. Interface. 8, 1708–1719 (2011)

    Article  Google Scholar 

  21. Zhang, X., Yao, Z., Zhang, Y., et al.: Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts. Acta Mech. Sin. 23, 495–501 (2007)

    Article  MathSciNet  Google Scholar 

  22. Marshall, I., Zhao, S., Papathanasopoulou, P., et al.: MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37, 679–687 (2004)

    Article  Google Scholar 

  23. Giddens, D.P., Zarins, C.K., Glagov, S.: The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115, 588–594 (1993)

    Article  Google Scholar 

  24. Bressloff, N.W.: Parametric geometry exploration of the human carotid artery bifurcation. J. Biomech. 40, 2483–2491 (2007)

    Article  Google Scholar 

  25. Fan, Y., Jiang, W., Zou, Y., et al.: Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation. Acta Mech. Sin. 25, 249–255 (2009)

    Article  MATH  Google Scholar 

  26. Gijsen, F.J.H., van de Vosse, F.N., Janssen, J.D.: The influence of the non-Newtonian properties of blood o the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32, 601–608 (1999)

    Article  Google Scholar 

  27. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113, 464–475 (1991)

    Article  Google Scholar 

  28. Rindt, C.C.M., van Steenhoven, A.A.: Unsteady flow in a rigid 3-D model of the carotid artery bifurcation. J. Biomech. 118, 90–96 (1996)

    Article  Google Scholar 

  29. Ghalichi, F.: Pulsatile laminar and turbulent blood flow simulation in large stenosed arteries and stenosed carotid artery bifurcation. [PhD Thesis]. Laval University, Quebec (1998)

    Google Scholar 

  30. Cheung, S.C., Wong, K.K., Yeoh, G.H., et al.: Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation. Australas. Phys. Eng. Sci. Med. 33, 319–328 (2010)

    Article  Google Scholar 

  31. Long, Q., Xu, X.Y., Ramnarine, K.V., et al.: Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34, 1229–1242 (2001)

    Article  Google Scholar 

  32. Massai, D., Soloperto, G., Gallo, D., et al.: Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. Eur. J. Mech. B-Fluid. 35, 92–101 (2012)

    Article  Google Scholar 

  33. Moayeri, M.S., Zendehbudi, G.R.: Effects of elastic property of the wall on flow characteristics through arterial stenoses. J. Biomech. 36, 525–535 (2003)

    Article  Google Scholar 

  34. Stroud, J.S., Berger, S.A, Saloner, D.: Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J. Biomech. 33, 443–455 (2000)

    Article  Google Scholar 

  35. Urquiza, S.A., Blanco, P.J., Vénere, M.J., et al.: Multidimensional modelling for the carotid artery blood flow. J. Comput. Methods Appl. Mech. Engrg. 195, 4002–4017 (2006)

    Article  MATH  Google Scholar 

  36. Lagan`a, K., Balossino, R., Migliavacca, F., et al.: Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38, 1129–1141 (2005)

    Article  Google Scholar 

  37. Moura, A.: The geometrical multiscale modelling of the cardiovascular system: Coupling 3D and 1D FSI models, [Ph.D. Thesis]. Politecnico di Milano, Milan (2007)

    Google Scholar 

  38. Balossino, R., Pennati, G., Migliavacca, F., et al.: Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions? Comput. Methods Biomech. Biomed. Engin. 12, 113–123 (2009)

    Article  Google Scholar 

  39. Blanco, P.J., Feijóo, R.A., Urquiza, S.A.: A unified variational approach for coupling 3D-1D models and its blood flow applications. Comput. Methods Appl. Mech. Engrg. 196, 4391–4410 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Formaggia, L., Gerbeau, J.F., Nobile, F., et al.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg. 191, 561–582 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Janela, J., Moura, A., Sequeira, A.: Absorbing boundary conditions for a 3D non-Newtonian fluid-structure interaction model for blood flow in arteries. J. Eng. Sci. 48, 1332–1349 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Liang, F., Fukasaku, K., Liu, H., et al.: A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery. Biomed Eng Online 10:84 (2011)

    Article  Google Scholar 

  43. Nobile, F.: Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3D and 1D models. J. Math. Comput. Mod. 49, 2152–2160 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Passerini, T., De Luca, M.R., Formaggia, L., et al.: A 3D/1D geometrical multiscale model of the cerebral vasculature. J. Eng. Math. 64, 319–330 (2009)

    Article  MATH  Google Scholar 

  45. Qin, K., Jiang, Z., Sun, H., et al.: A multiscale model for analyzing the synergy of CS and WSS on the endothelium in straight arteries. Acta Mech. Sin. 22, 76–83 (2006)

    Article  MATH  Google Scholar 

  46. Quarteroni, A., Veneziani, A.: Analysis of a geometrical multiscale model based on the coupling of ode’s and pde’s for blood flow simulation. Multiscale Model Simul. 1, 173–195 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ruan, W.: A coupled system of ODEs and quasilinear hyperbolic PDEs arising in a multiscale blood flow model. J. Math. Anal. Appl. 343, 778–798 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Sankaran, S., Esmaily Moghadam, M., Kahn, A.M., et al.: Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. (2012) DOI 10.1007/s10439-012-0579-3

    Google Scholar 

  49. Liu, Z.Y., Zhou, Y.S.: A coupling model of left ventricle and arterial system. Acta Mech. Sin. 5, 285–292 (1989)

    Article  MATH  Google Scholar 

  50. Formaggia, L., Nobile, F., Quarteroni, A., et al.: Multiscale modelling of the circulatory system: A preliminary analysis. Comput. Visual. Sci. 2, 75–83 (1999)

    Article  MATH  Google Scholar 

  51. Quarteroni, A., Ragni, S., Veneziani, A.: Coupling between lumped and distributed models for blood flow problems. J. Comput. Visual. Sci. 4, 111–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. 10:33 (2011)

    Google Scholar 

  53. Bharadvaj, B.K., Mabon, R.F., Giddens, D.P.: Steady flow in a model of the human carotid bifurcation. Part I: Flow visualization. J. Biomech. 15, 349–362 (1982)

    Article  Google Scholar 

  54. Rideout, V.C.: Mathematical and Computer Modeling of Physiological Systems. Prentice Hall, NewYork (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Firoozabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashefi, A., Mahdinia, M., Firoozabadi, B. et al. Multidimensional modeling of the stenosed carotid artery: A novel CAD approach accompanied by an extensive lumped model. Acta Mech Sin 30, 259–273 (2014). https://doi.org/10.1007/s10409-014-0047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0047-4

Keywords

Navigation