Skip to main content
Log in

Mechanical properties of double-stranded DNA biofilm with Gaussian distribution

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In microcantilever-based label-free biodetection technologies, deflection changes induced by adsorptions of double-stranded DNA (dsDNA) molecules on Au-layer surface are greatly affected by the mechanical, thermal and electrical properties of DNA biofilm. In this paper, the elastic properties of dsDNA biofilm are studied. First, the Parsegian’s empirical potential based on a mesoscopic liquid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders. Then, considering a Gaussian distribution of DNA interaxial distance, the thought experiment method is used to derive an analytical expression for Young’s modulus of DNA biofilm with a stochastic packing pattern for the first time. Results show that Young’s modulus of DNA biofilm is on the order of 10MPa. These findings could provide a simple and effective method to evaluate the mechanical properties of soft biofilm on substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, N.H., Tan, Z.Q., Li, J.J., et al: Interactions of singlestranded DNA on microcantilevers. Curr. Opin. Colloid Interface Sci. 16, 592–596 (2011)

    Article  Google Scholar 

  2. Xiong, Q., Duarte, N., Tadigadapa, S., et al.: Force-deflection spectroscopy: A new method to determine the Young’s modulus of nanofilaments. Nano. Lett. 6, 1904–1909 (2006)

    Article  Google Scholar 

  3. Zang, J., Zhao, X., Cao, Y., et al.: Localized ridge wrinkling of stiff films on compliant substrates. J. Mech. Phys. Solids 60, 1265–1279 (2012)

    Article  Google Scholar 

  4. Huang, S.Q., Feng, X.Q.: Spinodal surface instability of soft elastic thin films. Acta Mech. Sin. 24, 289–296 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Peng, X., Huang, J., Qin, L., et al.: A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech. Sin. 25, 565–570 (2009)

    Article  Google Scholar 

  6. Long, R., Hui, C.: Crack buckling in soft gels under compression. Acta Mech. Sin. 28, 1098–1105 (2012)

    Article  MathSciNet  Google Scholar 

  7. Paparcone, R., Cranford, S., Buehler, M.J.: Compressive deformation of ultralong amyloid fibrils. Acta Mech. Sin. 26, 977–986 (2010)

    Article  MATH  Google Scholar 

  8. Zhang, N.H., Chen, J.Z.: Mechanical properties of doublestranded DNA biolayers immobilized on microcantilever under axial compression. J. Biomech. 42, 1483–1487 (2009)

    Article  Google Scholar 

  9. Zhang, N.H., Chen, J.Z., Li, J.J., et al.: Mechanical properties of DNA biofilms adsorbed on microcantilevers in label-free biodetections. Biomaterials 31, 6659–6666 (2010)

    Article  Google Scholar 

  10. Zhang, N.H., Meng, W.L., Tan, Z.Q.: A multi-scale model for the analysis of the inhomogeneity of elastic properties of DNA biofilm on microcantilevers. Biomaterials 34, 1833–1842 (2013)

    Article  Google Scholar 

  11. Wu, G.H., Ji, H.F., Hansen, K.M., et al.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Nat. Acad. Sci. USA 98, 1560–1564 (2001)

    Article  Google Scholar 

  12. Liu, M.Z., Amro, N.A., Liu G.Y.: Nanografting for surface physical chemistry. Annu. Rev. Phys. Chem. 59, 367–386 (2008)

    Article  Google Scholar 

  13. Hagan, M.F., Majumdar, A., Chakraborty, A.K.: Nanomechanical forces generated by surface grafted DNA. J. Phys. Chem. B 106, 10163–10173 (2002)

    Article  Google Scholar 

  14. Zhang, N.H., Shan, J.Y.: An energy model for nanomechanical deflection of cantilever-DNA chip. J. Mech. Phys. Soilds 56, 2328–2337 (2008)

    Article  MATH  Google Scholar 

  15. Zhao, Y., Ganapathysubramanian, B., Shrotriya, P.: Cantilever deflection associated with hybridization of monomolecular DNA film. J. Appl. Phys. 111, 1–9 (2012)

    Google Scholar 

  16. Zhang, N.H., Xing, J.J.: An alternative model for elastic bending deformation of multilayered beams. J. Appl. Phys. 100, 103519 (2006)

    Article  Google Scholar 

  17. Zhang, N.H.: Thermoelastic stresses in multilayered beams. Thin Solid Films 515, 8402–8406 (2007)

    Article  Google Scholar 

  18. Zhang, N.H., Shan, J.Y., Xing, J.J.: Piezoelectric properties of single-strand DNA molecular brush biolayers. Acta Mech. Solida Sin. 20, 206–210 (2007)

    Article  Google Scholar 

  19. Zhang, N.H., Chen, J.Z.: An alternative two-variable model for bending problems of multilayered beams. ASME J. Appl. Mech. 75, 044503 (2008)

    Article  Google Scholar 

  20. Zhang, N.H., Chen, J.Z.: Elastic bending analysis of bilayered beams by an alternative two-variable method. Euro. J. Mech. A/Solids 28, 284–288 (2009)

    Article  MATH  Google Scholar 

  21. Zhang, N.H., Chen, J.Z.: An alternative model for elastic thermal stresses in two materials joined by a graded layer. Compos. B 41, 375–379 (2010)

    Article  Google Scholar 

  22. Zhang, N.H., Meng, W.L., Aifantis, E.C.: Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method. Compos. Struct. 93, 3130–3139 (2011)

    Google Scholar 

  23. Strey, H.H., Parsegian, V.A., Podgornik, R.: Equation of state for DNA liquid crystals: Fluctuation enhanced electrostatic double layer repulsion. Phys. Rev. Lett. 78, 895–898 (1997)

    Article  Google Scholar 

  24. Strey, H.H., Parsegian, V.A., Podgornik, R.: Equation of state for polymer liquid crystals: Theory and experiment. Phys. Rev. E 59, 999–1008 (1999)

    Article  Google Scholar 

  25. Legay, G., Finot, E., Meunier-Prest, R., et al.: DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope. Biosens. Bioelectron. 21, 627–636 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng-Hui Zhang.

Additional information

These authors contribute equally to the article.

The project was supported by the National Natural Science Foundation of China (11272193 and 10872121) and the Shanghai Leading Academic Discipline Project (S30106).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, HS., Meng, WL. & Zhang, NH. Mechanical properties of double-stranded DNA biofilm with Gaussian distribution. Acta Mech Sin 30, 15–19 (2014). https://doi.org/10.1007/s10409-014-0023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0023-z

Keywords

Navigation