Skip to main content
Log in

Quantitative assessment of the surface crack density in thermal barrier coatings

  • Research Paper
  • Solid Mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, a modified shear-lag model is developed to calculate the surface crack density in thermal barrier coatings (TBCs). The mechanical properties of TBCs are also measured to quantitatively assess their surface crack density. Acoustic emission (AE) and digital image correlation methods are applied to monitor the surface cracking in TBCs under tensile loading. The results show that the calculated surface crack density from the modified model is in agreement with that obtained from experiments. The surface cracking process of TBCs can be discriminated by their AE characteristics and strain evolution. Based on the correlation of energy released from cracking and its corresponding AE signals, a linear relationship is built up between the surface crack density and AE parameters, with the slope being dependent on the mechanical properties of TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, A.G., Mumm, D.R., Hutchinson, J.W., et al.: Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science 46, 505–553 (2001)

    Article  Google Scholar 

  2. Padture, N.P., Maurice, G., Eric, H.J.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002)

    Article  Google Scholar 

  3. Schulz, U., Peters, M., Bach, F.W., et al.: Graded coatings for thermal, wear and corrosion barriers. Materials Science and Engineering A 362, 61–80 (2003)

    Article  Google Scholar 

  4. Cao, X.Q., Vassen, R., Stoever, D.: Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society 24, 1–10 (2004)

    Article  Google Scholar 

  5. Wright, P.K., Evans, A.G.: Mechanisms governing the performance of thermal barrier coatings. Current Opinion in Solid State and Materials Science 4, 255–265 (1999)

    Article  Google Scholar 

  6. Qian, G., Nakamura, T., Berndt, C.C.: Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mechanics of Materials 27, 91–110 (1998)

    Article  Google Scholar 

  7. Lesage, J., Chicot, D.: Role of residual stresses on interface toughness of thermally sprayed coatings. Thin Solid Films 415, 143–150 (2002)

    Article  Google Scholar 

  8. Schlichting, K.W., Padture, N.P., Jordan, E.H., et al.: Failure modes in plasma-sprayed thermal barrier coatings. Materials Science and Engineering A 342, 120–130 (2003)

    Article  Google Scholar 

  9. Sfar, K., Aktaa, J., Munz, D., et al.: Numerical investigation of residual stress fields and crack behavior in TBC systems. Materials Science and Engineering A 1–2, 351–360 (2002)

    Article  Google Scholar 

  10. Kim, G.M., Yanar, N.M., Hewitt, E.N., et al.: The effect of the type of thermal exposure on the durability of thermal barrier coatings. Scripta Materialia 46, 489–495 (2002)

    Article  Google Scholar 

  11. Qian, L., Zhu, S., Kagawa, Y., et al.: Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system. Surface and Coatings Technology 173, 178–184 (2003)

    Article  Google Scholar 

  12. Chen, Z.B., Wang, Z.G., Zhu, S.J.: Tensile fracture behavior of thermal barrier coatings on superalloy. Surface and Coatings Technology 205, 3931–3938 (2011)

    Article  Google Scholar 

  13. Jayaraj, B., Vishweswaraiah, S., Desai, V.H., et al.: Electrochemical impedance spectroscopy of thermal barrier coatings as a function of isothermal and cyclic thermal exposure. Surface and Coatings Technology 177–178, 140–158 (2004)

    Article  Google Scholar 

  14. Wang, X., Mumm, D.R., Hutchinson, J.W., et al.: Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science 46, 505–553 (2001)

    Article  Google Scholar 

  15. Jordan, D.W., Faber, K.T.: X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling. Thin Solid Films 235, 137–141 (1993)

    Article  Google Scholar 

  16. Yang, L., Zhou, Y.C., Lu, C.: Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: An acoustic emission method. Acta Material 59, 6519–6529 (2011)

    Article  Google Scholar 

  17. Fu, L., Khor, K.A., Ng, H.W., et al.: Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings. Surface and Coatings Technology 130, 233–239 (2000)

    Article  Google Scholar 

  18. Ma, X.Q., Cho, S., Takemoto, M.: Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surface and Coatings Technology 139, 55–62 (2001)

    Article  Google Scholar 

  19. Kawasaki, A., Watanabe, R.: Thermal fracture behavior of metal/ceramic functionall graded materials. Engineering Fracture Mechanics 69, 1713–1728 (2002)

    Article  Google Scholar 

  20. Kucuk, A., Berndt, C.C., Senturk, U., et al.: Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: Acoustic emission response. Materials Science and Engineering A 284, 41–50 (2000)

    Article  Google Scholar 

  21. Yao, W.B., Dai, C.Y., Mao, W.G., et al.: Acoustic emission analysis on tensilefailure of air plasma-sprayed thermal barrier coatings. Surface and Coatings Technology 206, 3803–3807 (2012)

    Article  Google Scholar 

  22. Carpinteri, A., Corrado, M., Lacidogna, G.: Three different approaches for damage domain characterization in disordered materials: Fractal energy density, b-value statistics, renormalization group theory. Mechanics of Materials 53, 15–28 (2012)

    Article  Google Scholar 

  23. Landis, E.N.: Micro-macro fracture relationships and acoustic emissions in concrete. Construction and BuildingMaterials 13, 65–72 (1999)

    Google Scholar 

  24. Lu, C., Mai, Y.W., Shen, Y.G.: Optimum information in crackling noise. Physical Review E 72, 027101 (2005)

    Article  Google Scholar 

  25. Sause, M.G.R., Haider, F., Horn, S.: Quantification of metallic coating failure on carbon fiber reinforced plastics using acoustic emission. Surface and Coatings Technology 204, 300–308 (2009)

    Article  Google Scholar 

  26. McGuigan, A.P., Briggs, G.A.D., Burlakov, V.M., et al.: An elastic-plastic shear lag model for fracture of layered coatings. Thin Solid Films 424, 219–223 (2003)

    Article  Google Scholar 

  27. Aktaa, J., Sfar, K., Munz, D.: Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Materialia 53, 4399–4413 (2005)

    Article  Google Scholar 

  28. Nusair Khan, A., Lu, J., Liao, H.: Effect of residual stresses on air plasma sprayed thermal barrier coatings. Surface and Coatings Technology 168, 291–299 (2003)

    Article  Google Scholar 

  29. Wu, D.J., Mao, W.G., Zhou, Y.C., et al.: Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system. Applied Surface Science 257, 6040–6043 (2011)

    Article  Google Scholar 

  30. Moskal, G.: Criteria of assessment of powders provided to spray by the APS method for new and conventional layers type TBC. Archives of Materials Science and Engineering 37, 29–36 (2009)

    Google Scholar 

  31. Marshall, D.B., Lawn, B.R.: Residual stress effects in sharp contact cracking. Journal of Materials Science 14, 2001–2011 (1979)

    Article  Google Scholar 

  32. Vasinonta, A., Beuth, J.L.: Measurement of interfacial toughness in thermal barrier coating systems by indentation. Engineering Fracture Mechanics 68, 843–860 (2001)

    Article  Google Scholar 

  33. Kwon, J.Y., Kim, J.H., Lee, S.Y., et al.: Microstructural evolution and residual stresses of air-plasma sprayed thermal barrier coatings under thermal exposure. Surface Review and Letters 17, 337–343 (2010)

    Article  Google Scholar 

  34. Xu, Z.H., Yang, Y., Huang, P., et al.: Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Materialia 58, 5972–5979 (2010)

    Article  Google Scholar 

  35. Scardi, P., Leoni, M., Bertamini, L.: Influence of phase stability on the residual stress in partially stabilized zirconia TBC produced by plasma spray. Surface and Coatings Technology 76–77, 106–112 (1995)

    Article  Google Scholar 

  36. Teixeira, V., Andritschky, M., Fischer, W., et al.: Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surface and Coatings Technology 120–121, 103–111 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Yi-Chun Zhou.

Additional information

The project was supported by the National Natural Science Foundation of China (11002122, 51172192, 11272275, and 10828205), the Natural Science Foundation of Hunan Province (11JJ4003), and the Key Project of Scientific Research Conditions in Hunan Province (2012TT2040). The specimens were provided by the AVIC Shenyang Liming Aero-Engine (GROUP) Corporation Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Zhong, ZC., Zhou, YC. et al. Quantitative assessment of the surface crack density in thermal barrier coatings. Acta Mech Sin 30, 167–174 (2014). https://doi.org/10.1007/s10409-014-0019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0019-8

Keywords

Navigation