Skip to main content
Log in

Self-shaping of bioinspired chiral composites

  • Research Paper
  • Solid Mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of self-shaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fratzl, P.: Biomimetic materials research: What can we really learn from nature’s structural materials? J. R. Soc. Interface 15, 637–642 (2007)

    Article  Google Scholar 

  2. Bhushan, B.: Biomimetics: Lessons from nature-An overview. Phil. Trans. R. Soc. A 367, 1445–1486 (2009)

    Article  Google Scholar 

  3. Youngblood, J.P., Sottos, N.R.: Bioinspired materials for selfcleaning and self-healing. MRS Bull. 33,732–737 (2008)

    Article  Google Scholar 

  4. Chen, Q., Pugno, N.M.: Bio-mimetic mechanisms of natural hierarchical materials: A review. J. Mech. Behav. Biomed. 19, 3–33 (2013)

    Article  Google Scholar 

  5. Ji, B.H., Gao, H.J.: Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010)

    Article  Google Scholar 

  6. Chen, S.H., Gao, H.J.: Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for nonslipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. Solids 55, 1001–1015 (2007)

    Article  MATH  Google Scholar 

  7. Liu, J.L., Mei, Y., Xia, R.: A new wetting mechanism based upon triple contact line pinning. Langmuir 27, 196–200 (2011)

    Article  Google Scholar 

  8. Shao, Y., Zhao, H.P, Feng, X.Q., et al.: Discontinuous crackbridging model for fracture toughness analysis of nacre. J. Mech. Phys. Solids 60, 1400–1419 (2012)

    Article  MathSciNet  Google Scholar 

  9. Erb, R.M., Sander, J.S., Grisch, R., et al.: Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013)

    Article  Google Scholar 

  10. Studart A.R., Erb, R.M.: Bioinspired materials that self-shape through programmed microstructures. Soft Matt. 10, 1284–1294 (2013)

    Article  Google Scholar 

  11. Mather, P.T., Luo, X., Rousseau, I.A.: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)

    Article  Google Scholar 

  12. Thérien-Aubin, H., Wu, Z.L., Nie, Z., et al.: Multiple shape transformations of composites hydrogel sheets. 135, 4834–4839 (2013)

    Google Scholar 

  13. Dawson, C., Vincent, J.F.C., Rocca, A.M.: How pine cones open. Nature 290, 668 (1997)

    Article  Google Scholar 

  14. Armon, S., Efrati, E., Kupferman, R., et al.: Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011)

    Article  Google Scholar 

  15. Elbaum, R., Zaltzman, L., Burgert, I., et al.: The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007)

    Article  Google Scholar 

  16. Abraham, Y., Tamburu, C., Klein, E., et al.: Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface 9, 640–647 (2012)

    Article  Google Scholar 

  17. Gerbode, S.J., Puzey, J.R., McCormick, A.G., et al.: How the Cucumber tendril coils and overwinds. Science 337, 1087–1091 (2012)

    Article  Google Scholar 

  18. Wang, J.S., Ye, H.M., Qin, Q.H., et al.: Anisotropic surface effects on the formation of chiral morphologies of nanomaterials. Proc. R. Soc. A 468, 609–633 (2012)

    Article  Google Scholar 

  19. Wang, J.S., Feng, X.Q., Wang, G. F., et al.: Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys. Lett. 92, 191901 (2008)

    Article  Google Scholar 

  20. Chen, Z., Majidi, C., SroIovitz, D.J., et al.: Tunable helical ribbons. Appl. Phys. Lett. 98, 011906 (2011)

    Article  Google Scholar 

  21. Wang, J.S., Wang, G., Feng, X.Q., et al.: Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 3, 3102 (2013)

    Google Scholar 

  22. Gao, X.P., Ding, Y., Mai, W.J., et al.: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)

    Article  Google Scholar 

  23. Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanospings, and nanorings of piezoelectric nanobelts. Nano. Lett. 3, 1625–1631 (2003)

    Article  Google Scholar 

  24. Korgel, B.A.: Nanospings take shape. Science 309, 1683–1684 (2005).

    Article  Google Scholar 

  25. Guo, W.L., Guo, Y.F.: Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 91, 115501 (2003)

    Article  Google Scholar 

  26. Goriely, A., Neukirch, S.: Mechanics of climbing and attachment in twining plats. Phys. Rev. Lett. 97, 184302 (2006)

    Article  Google Scholar 

  27. Marklund, E., Varna, J.: Modeling the effect of helical fiber structure on wood fiber composite elastic properties. Appl. Compos. Mater. 16, 245–262 (2009)

    Article  Google Scholar 

  28. Wang, J.S., Wang, G.F., Feng, X.Q., et al.: Surface effects on the superelasticity of nanohelices. J. Phys.: Condens. Matter. 24, 265303 (2012)

    Article  Google Scholar 

  29. Whitman, A.G., Desilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elasticity 4, 265–280 (1974)

    Article  MATH  Google Scholar 

  30. Tu, Z.C., Li, Q.X., Hu, X.: Theoretical determination of the necessary conditions for the formation of ZnO nanorings and nanohelices. Phys. Rev. B 73, 115402 (2006)

    Article  Google Scholar 

  31. Gao, L.T., Feng, X.Q., Yin, Y.J., et al.: An electromechanical liquid crystal model of vesicles. J. Mech. Phys. Solids 59, 2844–2862 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Shan Wang.

Additional information

The project was supported by the National Basic Research Program of China (2012CB937500), Grants-in-Aid for Scientific Research (21226005) from the Japan Society for the Promotion of Science (JSPS), the National Natural Science Foundation of China (11272230 and 11172207), and the Basic Application and Advanced Technology Research Project in Tianjin (11JCYBJC09700).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, QQ., Cui, YH., Shimada, T. et al. Self-shaping of bioinspired chiral composites. Acta Mech Sin 30, 533–539 (2014). https://doi.org/10.1007/s10409-014-0012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0012-2

Keywords

Navigation