Skip to main content
Log in

Surface integral analogy approaches for predicting noise from 3D high-lift low-noise wings

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Three surface integral approaches of the acoustic analogies are studied to predict the noise from three conceptual configurations of three-dimensional high-lift low-noise wings. The approaches refer to the Kirchhoff method, the Ffowcs Williams and Hawkings (FW-H) method of the permeable integral surface and the Curle method that is known as a special case of the FW-H method. The first two approaches are used to compute the noise generated by the core flow region where the energetic structures exist. The last approach is adopted to predict the noise specially from the pressure perturbation on the wall. A new way to construct the integral surface that encloses the core region is proposed for the first two methods. Considering the local properties of the flow around the complex object-the actual wing with high-lift devices-the integral surface based on the vorticity is constructed to follow the flow structures. The surface location is discussed for the Kirchhoff method and the FW-H method because a common surface is used for them. The noise from the core flow region is studied on the basis of the dependent integral quantities, which are indicated by the Kirchhoff formulation and by the FW-H formulation. The role of each wall component on noise contribution is analyzed using the Curle formulation. Effects of the volume integral terms of Lighthill’s stress tensors on the noise prediction are then evaluated by comparing the results of the Curle method with the other two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyrintzis, A.S.: Integral acoustics methods: From the (CFD) near-field to the (acoustic) far-field. International Journal of Aeroacoustics 2, 95–128 (2003)

    Article  Google Scholar 

  2. Lighthill, M.J.: On sound generated aerodynamically. I. general theory. Proc. Roy. Soc. A 211, 564–587 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lighthill, M.J.: On sound generated aerodynamically. II. turbulence as a source of sound. Proc. Roy. Soc. A 222, 1–32 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  4. Curle, N.: Theinfluence of solid boundaries upon aerodynamic sound. Proc. Roy. Soc. A 231, 505–514 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ffowcs Williams, J.E., Hawkings., D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. Roy. Soc. A 264, 321–342 (1969)

    Article  MATH  Google Scholar 

  6. di Francescantonio, P.: A new Kirchhoff formulation for transonic rotor noise. Journal of Sound and Vibration 202, 491–509 (1997)

    Article  Google Scholar 

  7. Brentner, K.S., Farassat, F.: An analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA Journal 36, 1379–1386 (1998)

    Article  Google Scholar 

  8. Kirhhoff, G.R.: Zur theorie der lichtstrahlen. Ann. Phys. (Leipzig) 18, 663–695 (1883)

    Article  Google Scholar 

  9. Morgans, R.P.: The Kirchhoff formula extended to a moving surface. Philosophical Magazine 9, 141–161 (1930)

    MATH  Google Scholar 

  10. Farassat, F., Myers, M.K.: Extension of Kirchhoff’s formula to radiation from moving surfaces. Journal of Sound and Vibration 123, 451–461 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farassat, F., Myers, M.K.: The Kirchhoff formula for a supersonically moving surface. In: First Joint CEAS/AIAA Aeroacoustics Conference. AIAA 95-062 (1995)

    Google Scholar 

  12. Lyrintzis, A.S.: Review: The use of Kirchhoff method in computational aeroacoustics. ASME Journal of Fluids Engineering 116, 665–676 (1994)

    Article  Google Scholar 

  13. Freund, J.B., Lele, S.K., Moin, P.: Caculation of the radiated sound field using an opening Kirchhoff surface. AIAA Journal 34, 909–916 (1996)

    Article  MATH  Google Scholar 

  14. Farassat, F.: Acoustic radiation from rotating blades-The Kirchhoff method in aeroacoustics. Journal of Sound and Vibration 239, 785–800 (2001)

    Article  Google Scholar 

  15. Brentner, K.S., Farassat, F.: Modeling aerodynamically generated sound of helicopter rotors. Progress in Aerospace Sciences 39, 83–120 (2003)

    Article  Google Scholar 

  16. Prieur, J., Rahier, G.: Aeroacoustic integral methods, formulation and efficient numerical implementation. Aerospace Science and Technology 5, 457–468 (2001)

    Article  MATH  Google Scholar 

  17. Lyrintzis, A.S., Uzun, A.: Integral techniques for jet aeroacoustics calculations. In: 7th AIAA/CEAS Aeroacoustics Conference, Maastricht, Netherlands. AIAA 2001-2253 (2001)

    Google Scholar 

  18. Lockard, D.P., Lilley, G.M.: The airframe noise reduction chanllenge. NASA/TM-2004-213013 (2004)

    Google Scholar 

  19. Singer, B.A., Brentner, K.S., Lockard, D.P., et al.: Simulation of acoustic scattering from a trailing edge. Journal of Sound and Vibraion 230, 541–560 (2000)

    Article  Google Scholar 

  20. Howe, M.S.: On the hydroacoustics of a trailing edge with a detached flap. Journal of Sound and Vibration 239, 801–817 (2001)

    Article  Google Scholar 

  21. Amiet, R.K.: Noise due to turbulence flow past a trailing edge. Journal of Sound and Vibration 47, 387–393 (1976)

    Article  Google Scholar 

  22. Roger, M., Moreau, S.: Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part 1: Theory. Journal of Sound and Vibration 286, 477–506 (2005)

    Article  Google Scholar 

  23. Moreau, S., Roger, M.: Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part 2: Application. Journal of Sound and Vibration 323, 397–425 (2009)

    Article  Google Scholar 

  24. Tam, C.K.W., Yu, J.C.: Trailing edge noise. In: 2nd AIAA Aeroacoustics Conference. AIAA 1975-489 (1975)

    Google Scholar 

  25. Kalitzin, G., Kalitzin, N., Wilde, A.: A factorization scheme for rans turbulence models and sngr predictions of trailing edge noise. In: 21st AIAA Aeroacoustics Conference. AIAA 2000-1982 (2000)

    Google Scholar 

  26. Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/APE method. Journal of Sound and Vibration 270, 509–524 (2004)

    Article  Google Scholar 

  27. Sandberg, R.D., Jones, L.E., Sandham, N.D., et al.: Direct numerical simulations of tonal noise generated by laminar flow past airfoils. Journal of Sound and Vibration 320, 838–858 (2009)

    Article  Google Scholar 

  28. Ewert, R.: Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle mesh (RPM) method. Computers and Fluids 37, 369–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lockard, D.P., Choudhari M.M.: Noise radiation from a leading-edge slat. In: 15th AIAA/CEAS Aeroacoustics Conference. AIAA 2009-3101 (2009)

    Google Scholar 

  30. Howe, M.S.: On the generation of side-edge flap noise. Journal of Sound and Vibration 80, 555–573 (1982)

    Article  Google Scholar 

  31. Casper, J.H., Lockard, D.P., Khorrami, M.R., et al.: Investigation of volumetric sources in airframe noise simulations. In: 10th AIAA/CEAS Aeroacoustics Conference. AIAA 2004-2805 (2004)

    Google Scholar 

  32. Singer, B.A., Lockard, D.P., Brentner, K.S.: Computational aeroacoustics analysis of slat trailing edge flow. In: 5th AIAA/CEAS Aeroacoustics Conference. AIAA 99-1802 (1999)

    Google Scholar 

  33. He, G.W., Rubinstein, R., Wang, L.P.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14, 2186–2193 (2002)

    Article  Google Scholar 

  34. He, G.W., Wang, M., Lele, S.K.: On the computation of spacetime correlations by large-eddy simulation. Phys. Fluids 16, 3859–3867 (2004)

    Article  Google Scholar 

  35. Yao, H.D., He, G.W., Wang, M., et al.: Time correlations of pressure in isotropic turbulence. Phys. Fluids 20, 025105 (2008)

    Article  Google Scholar 

  36. Yang, Y., He, G.W., Wang, L.P.: Effects of subgrid-scale modeling on Lagrangian statistics in large eddy simulation. J. Turbulence 9, 1–24 (2008)

    MathSciNet  Google Scholar 

  37. Jin, G.D., He, G.W., Wang, L.P.: Large-eddy simulation of turbulent-collision of heavy particles in isotropic turbulence. Phys. Fluids 22, 055106 (2010)

    Article  Google Scholar 

  38. He, G.W., Zhang J.B.: Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E 73, 055303 (2006)

    Article  Google Scholar 

  39. Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316 (2009)

    Article  Google Scholar 

  40. Eliasson, P.E., Grundestam, O., Peng, S.H., et al.: Assessment of high-lift concepts for a regional aircraft in the alonoco project. In: 50th AIAA Aerospace Sciences Meeting. AIAA 2012-277 (2012)

    Google Scholar 

  41. Goldstein, M.E.: Aeroacoustics. McGraw-Hill Book Company, New York (1976)

    MATH  Google Scholar 

  42. Wagner, C., Hüttl, T., Sagaut, P.: Large-Eddy Simulation for Acoustics. Cambridge University, Cambridge (2007)

    Book  Google Scholar 

  43. Uzun, A., Blaisdell, G.A., Lyrintzis, A.S.: Coupling of integral acoustics methods with les for jet noise prediction. International Journal of Aeroacoustics 3, 297–346 (2004)

    Article  Google Scholar 

  44. Andersson, N., Eriksson, L.E., Davidson, L.: Investigation of an isothermal Mach 0.75 jet and its radiated sound using largeeddy simulation and Kirchhoff surface integration. International Journal of Heat and Fluid Flow 26, 393–410 (2005)

    Article  Google Scholar 

  45. Pan, F.L., Uzun, A., Lyrintzis, A.S.: Surface integral methods in jet aeroacoustics: Refraction corrections. Journal of Aircraft 45, 381–387 (2008)

    Article  Google Scholar 

  46. Manoha, E., Redonnet, S., Delahay, C., et al.: Numerical prediction of the unsteady flow and radiated noise from a 3D lifting airfoil. In: RTO AVT Symposium on “Ageing Mechanisms and Control: Part A — Developments in Computational Aero- and Hydro-Acoustics”, Manchester, UK. RTO-MP-079(1) (2001)

    Google Scholar 

  47. Rahier, G., Prieur, J., Vuillot, F., et al.: Investigation of integral surface formulations for acousitc predictions of hot jets starting from unsteady aerodynamic simulations. In: 9th AIAA/CEAS Aeroacoustics Conference. AIAA 2003-3164 (2003)

    Google Scholar 

  48. Peng, S.H.: Algebraic hybrid RANS-LES modelling applied to incompressible and compressible turbulent flows. In: 36th AIAA Fluid Dynamics Conference. AIAA 2674-2690 (2006)

    Google Scholar 

  49. Eliasson, P.: Edge, a Navier-Stokes solver for unstructured grids. In: Proceedings to Finite Volumes for Complex Applications III 527–534 (2002)

    Google Scholar 

  50. Eliasson, P., Weinerfelt, P.: Recent applications of the flow solver edge. In: Proceedings to 7th Asian CFD Conference, Bangalore, India (2007)

    Google Scholar 

  51. Eliasson, P., Weinerfelt, P., Nordström, J.: Application of a line-implicit scheme on stretched unstructured grids. In: First Joint CEAS/AIAA Aeroacoustics Conference. AIAA 2009-0163 (2009)

    Google Scholar 

  52. Eliasson, P., Weinerfelt, P., Nordström, J.: The influence of weak and strong wall boundary conditions on the convergence to steady-state of the Navier-Stokes equations. In: First Joint CEAS/AIAA Aeroacoustics Conference. AIAA 2009-3551 (2009)

    Google Scholar 

  53. Grundestam, O., Peng, S.H., Eliasson, P.E., et al.: Local flow properties in relation to noise generation for low-noise high-lift configurations. In: 50th AIAA Aerospace Sciences Meeting. AIAA 2012-278 (2012)

    Google Scholar 

  54. Andersson, N., Eriksson, L.E., Davidson, L.: A study of mach 0.75 jets and their radiated sound using large-eddy simulation. In: 10th AIAA/CEAS Aeroacoustics Conference. AIAA 2004-3024 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Dong Yao.

Additional information

The project was supported by the Clean Sky Joint Undertaking (CSJU) (CS-GA-2009-255714).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, HD., Davidson, L., Eriksson, LE. et al. Surface integral analogy approaches for predicting noise from 3D high-lift low-noise wings. Acta Mech Sin 30, 326–338 (2014). https://doi.org/10.1007/s10409-014-0008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0008-y

Keywords

Navigation