Skip to main content
Log in

Theoretical and numerical investigation of HF elastic wave propagation in two-dimensional periodic beam lattices

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave propagation are highlighted in high frequency domains. One important result presented herein is the comparison between the first Bloch wave modes to the membrane and bending/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homogenized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retropropagating Bloch wave modes with a negative group velocity, and of the corresponding “retro-propagating” frequency bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson, L.J., Ashby, M.F.: Cellular solids: Structures and properties. International Series on Material Science & Technology, Pergamon Press, Pergamon (1988)

    Google Scholar 

  2. Burton, W.S., Noor, A.K.: Assessment of continuum models for sandwich panel honeycomb cores. Computational Methods in Applied Mechanics and Engineering 145, 341–360 (1997)

    Article  MATH  Google Scholar 

  3. Grédé, A., Tie, B., Aubry, D.: Elastic wave propagation in hexagonal honeycomb sandwich panels: Physical understanding and numerical modeling. Journal de Physique 134, 507–514 (2006)

    Google Scholar 

  4. Grédé, A.: Modélisation des chocs d’origine pyrotechnique dans les structures d’Ariane5: Dévéloppement de modèles de propagation et d’outils de modélisation, [Ph.D. Thesis], Ecole Centrale Paris, France (2009)

    Google Scholar 

  5. Mead, D.J.: A general theory of harmonic wave propagation in linear periodic systems with multiply coupling. Journal of Sound and Vibration 27, 235–260 (1973)

    Article  MATH  Google Scholar 

  6. Atkins, P., Friedman, R.: Molecular Quantum Mechanics. Oxford University Press, Oxford, Great Britain (2005)

    Google Scholar 

  7. Srikantha, A., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattice. J. Acoust. Soc. Am. 119, 1995–2005 (2006)

    Article  Google Scholar 

  8. Tian, B.Y., Tie, B., Aubry, D., et al.: Elastic wave propagation in periodic cellular structures. Computer Modeling in Engineering & Sciences 76, 217–234 (2011)

    Google Scholar 

  9. Brillouin, L.: Wave Propagation in the Periodic Structures. Dover Publication, New York (1953)

    Google Scholar 

  10. Mead, D.J.: Free wave propagation in periodically-supported infinite beams. Journal of Sound and Vibration 11, 181–197 (1970)

    Article  Google Scholar 

  11. Sigalas, M., Economou, E.N.: Elastic and acoustic wave band structure. Journal of Sound and Vibration 158, 377–382 (1992)

    Article  Google Scholar 

  12. Richards, D., Pines, D.J.: Passive reduction of gear mesh vibration using a periodic drive shaft. Journal of Sound and Vibration 264, 317–342 (2003)

    Article  Google Scholar 

  13. Langley, R.S., Bardell, N.S., Ruivo, H.M.: The response of two-dimensional periodic structures to harmonic point loading: a theoretical and experimental study on a beam grillage. Journal of Sound and Vibration 207, 521–535 (1997)

    Article  Google Scholar 

  14. Ruzzene, M., Scarpa, F., Soranna, F.: Wave beaming effects in two-dimensional cellular structures. Smart Mater. Struct. 12, 363–372 (2003)

    Article  Google Scholar 

  15. Gonella, S., Ruzzene, M.: Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. Journal of Sound and Vibration 312, 125–139 (2008)

    Article  Google Scholar 

  16. Tian, B.Y.: Numerical simulation of elastic wave propagation in honeycomb core sandwich plates, [Ph.D. Thesis], Ecole Centrale Paris, France (2012)

    Google Scholar 

  17. Mencik, J.M., Ichchou, M.N., Jézéquel, L.: Propagation multimodale dans les systèmes périodiques couplés. Rev. Eur. Méc. Numér. 15, 293–306 (2006)

    MATH  Google Scholar 

  18. Collet, M., Ouisse, M., Ruzzene, M., et al.: Floquet-Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems. International Journal of Solids and Structures 48, 2837–2848 (2011)

    Article  Google Scholar 

  19. Barbarosie, C., Neves, M.M.: Periodic structures for frequency filtering: Analysis and optimization. Computers & Structures 82, 1399–1403 (2004)

    Article  Google Scholar 

  20. Spadoni, A., Ruzzene, M., Gonella, S., et al.: Phononic properties of hexagonal chiral lattices. Wave Motion 46, 435–450 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kittel, C.: Elementary Solid State Physics: A Short Course, 1st edn. Wiley, USA (1962)

    Google Scholar 

  22. Cerveny, V.: Seismic Ray Theory. Charles University, Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  23. Datta, S.K., Shah, A.H.: Elastic Waves in Composite Media and Structures: With Application to Ultrasonic Nondestructive Evaluation. CRC Press, Taylor & Francis Group, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tie, B., Tian, B.Y. & Aubry, D. Theoretical and numerical investigation of HF elastic wave propagation in two-dimensional periodic beam lattices. Acta Mech Sin 29, 783–798 (2013). https://doi.org/10.1007/s10409-013-0087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0087-1

Keywords

Navigation