Skip to main content
Log in

An adaptive method for high-resolution topology design

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

For the purpose of achieving high-resolution optimal solutions this paper proposes a nodal design variable-based adaptive method for topology optimization of continuum structures. The analysis mesh-independent density field, interpolated by the nodal design variables at a given set of density points, is adaptively refined/coarsened according to a criterion regarding the gray-scale measure of local regions. New density points are added into the gray regions and redundant ones are removed from the regions occupied by purely solid/void phases for decreasing the number of design variables. A penalization factor adaptivity technique is employed to prevent premature convergence of the optimization iterations. Such an adaptive scheme not only improves the structural boundary description quality, but also allows for sufficient further topological evolution of the structural layout in higher adaptivity levels and thus essentially enables high-resolution solutions. Moreover, compared with the case with uniformly and finely distributed density points, the proposed adaptive method can achieve a higher numerical efficiency of the optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendsøe, M.P., Kikuchi N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  2. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Multidiscip. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  3. Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

  4. Rozvany, G.I.N., Zhou, M., Birker, T.: Generalized shape optimization without homogenization. Struct. Multidiscip. Optim. 4, 250–252 (1992)

    Article  Google Scholar 

  5. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Archive Appl. Mech. 69, 635–654 (1999)

    Article  Google Scholar 

  6. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MATH  Google Scholar 

  7. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rong, J.H., Liang, Q.Q.: A level set method for topology optimization of continuum structures with bounded design domains. Comput. Methods Appl. Mech. Eng. 197, 1447–1465 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Luo, Z., Wang, M.Y., Wang, S.Y., et al.: A level set-based parameterization method for structural shape and topology optimization. Int. J. Numer. Methods Eng. 76, 1–26 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yamada, T., Izui, K., Nishiwaki, S., et al.: A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 199, 2876–2891 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Xia, Q., Wang, M.Y.: Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput.-Aided Des. 40, 660–675 (2008)

    Article  MathSciNet  Google Scholar 

  12. Xie, Y.M., Steven, G.P.: Evolutionary structural optimization for dynamic problems. Comput. & Struct. 58, 1067–1073 (1996)

    Article  MATH  Google Scholar 

  13. Belytschko, T., Xiao, S.P., Parimi, C.: Topology optimization with implicit functions and regularization. Int. J. Numer. Methods Eng. 57, 1177–1196 (2003)

    Article  MATH  Google Scholar 

  14. Bourdin, B., Chambolle, A.: The phase-field method in optimal design. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer, 207–215 (2006)

    Chapter  Google Scholar 

  15. Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229, 2697–2718 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wallin, M., Ristinmaa, M.: Howard’s algorithm in a phase-field topology optimization approach. Int. J. Numer. Methods Eng. 94, 43–59 (2013)

    Article  MathSciNet  Google Scholar 

  17. Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: A review. Appl. Mech. Rev. 54, 331–389 (2001)

    Article  Google Scholar 

  18. Zhang, W.H., Sun, S.P.: Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Methods Eng. 68, 993–1011 (2006)

    Article  MATH  Google Scholar 

  19. Bendsøe, M.P.: Optimization of structural topology, shape, and material. Springer, Berlin (1995)

    Book  Google Scholar 

  20. Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Diaz, A., Sigmund, O.: Checkerboard patterns in layout optimization. Struct. Optim. 10, 40–45 (1995)

    Article  Google Scholar 

  22. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidiscip. Optim. 16, 68–75 (1998)

    Article  Google Scholar 

  23. Bourdin, B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50, 2143–2158 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)

    Article  Google Scholar 

  25. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  26. Borrvall, T., Petersson, J.: Topology optimization using regularized intermediate density control. Comput. Methods Appl. Mech. Eng. 190, 4911–4928 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Haber, R.B., Jog, C.S., Bendsøe, M.P.: A new approach to variable-topology shape design using a constraint on perimeter. Struct. Multidiscip. Optim. 11, 1–12 (1996)

    Article  Google Scholar 

  28. Jang, G.W., Jeong, J.H., Kim, Y.Y., et al.: Checkerboard-free topology optimization using non-conforming finite elements. Int. J. Numer. Methods Eng. 57, 1717–1735 (2003)

    Article  MATH  Google Scholar 

  29. Zhou, M., Shyy, Y.K., Thomas, H.L.: Checkerboard and minimum member size control in topology optimization. Struct. Multidiscip. Optim. 21, 152–158 (2001)

    Article  Google Scholar 

  30. Guest, J.K., Prévost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004)

    Article  MATH  Google Scholar 

  31. Xu, S.L., Cai, Y.W., Cheng, G.D.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Matsui, K., Terada, K.: Continuous approximation of material distribution for topology optimization. Int. J. Numer. Methods Eng. 59, 1925–1944 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rahmatalla, S.F., Swan, C.C.: A Q4/Q4 continuum structural topology optimization implementation. Struct. Multidiscip. Optim. 27, 130–135 (2004)

    Article  Google Scholar 

  34. Paulino, G.H., Le, C.H.: A modified Q4/Q4 element for topology optimization. Struct. Multidiscip. Optim. 37, 255–264 (2009)

    Article  MathSciNet  Google Scholar 

  35. Kang, Z., Wang, Y.Q.: A nodal variable method of structural topology optimization based on Shepard interpolant. Int. J. Numer. Methods Eng. 90, 329–342 (2011)

    Article  MathSciNet  Google Scholar 

  36. Kang, Z., Wang, Y.Q.: Structural topology optimization based on non-local Shepard interpolation of density field. Comput. Methods Appl. Mech. Eng. 200, 3515–3525 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Luo, Z., Zhang, N., Wang, Y., et al.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Methods Eng. 93, 443–464 (2012)

    Article  MathSciNet  Google Scholar 

  38. Maute, K., Ramm, E.: Adaptive topology optimization. Struct. Optim. 10, 100–112 (1995)

    Article  Google Scholar 

  39. Costa, Jr. J.C.A., Alves, M.K.: Layout optimization with hadaptivity of structures. Int. J. Numer. Methods Eng. 58, 83–102 (2003)

    Article  MATH  Google Scholar 

  40. Stainko, R.: An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun. Numer. Methods Eng. 22, 109–118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Bruggi, M., Verani, M.: A fully adaptive topology optimization algorithm with goal-oriented error control. Comput. & Struct. 89, 1481–1493 (2011)

    Article  Google Scholar 

  42. Wallin, M., Ristinmaa, M., Askfelt, H.: Optimal topologies derived from a phase-field method. Structural and Multidisciplinary Optimization 45, 171–183 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nguyen, T.H., Paulino, G.H., Song, J., et al.: Improving multiresolution topology optimization via multiple discretizations. Int. J. Numer. Methods Eng. 92, 507–530 (2012)

    Article  MathSciNet  Google Scholar 

  44. Wang, Y.Q., Kang, Z., He, Q.Z.: An adaptive refinement approach for topology optimization based on separated density field description. Comput. & Struct. 117, 10–22 (2013)

    Article  Google Scholar 

  45. Michell, A.G.M.: The limits of economy of material in framestructures. Philos. Mag. 8, 589–597 (1904)

    Article  MATH  Google Scholar 

  46. Kim, Y.Y., Yoon, G.H.: Multi-resolution multi-scale topology optimization-a new paradigm. Int. J. Solids Struct. 37, 5529–5559 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Nguyen, T.H., Paulino, G.H., Song, J., et al.: A computational paradigm for multiresolution topology optimization (MTOP). Struct. Multidiscip. Optim. 41, 525–539 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rozvany, G.I.N., Querin, O.M., Logo, J., et al.: Exact analytical theory of topology optimization with some pre-existing members or elements. Struct. Multidiscip. Optim. 31, 373–377 (2006)

    Article  MATH  Google Scholar 

  49. Lewińki, T., Rozvany, G.I.N.: Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains. Struct. Multidiscip. Optim. 35, 165–174 (2008)

    Article  MathSciNet  Google Scholar 

  50. Lewińki, T., Rozvany, G.I.N.: Exact analytical solutions for some popular benchmark problems in topology optimization II: three-sided polygonal supports. Struct. Multidiscip. Optim. 33, 337–349 (2007)

    Article  MathSciNet  Google Scholar 

  51. Querin, O.M., Victoria, M., Marti, P.: Topology optimization of truss-like continua with different material properties in tension and compression. Struct. Multidiscip. Optim. 42, 25–32 (2010)

    Article  Google Scholar 

  52. Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  53. Lin, Z.Q., Gea, H.C., Liu, S.T.: Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Acta Mechanica Sinica 27, 730–737 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zhang, J., Zhang, W.H., Zhu, J.H.: An extended stress-based method for orientation angle optimization of laminated composite structures. Acta Mechanica Sinica 27, 977–985 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Additional information

The project was supported by the Key Project of Chinese National Programs for Fundamental Research and Development (2010CB832703) and the National Natural Science Foundation of China (11072047 and 91130025).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YQ., He, JJ., Luo, Z. et al. An adaptive method for high-resolution topology design. Acta Mech Sin 29, 840–850 (2013). https://doi.org/10.1007/s10409-013-0084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0084-4

Keywords

Navigation