Skip to main content
Log in

Attitude control of a rigid spacecraft with one variable-speed control moment gyro

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilibrium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and derivative controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI controller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude stabilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovacic, I.: On the field method in nonholonomic mechanics. Acta Mechanica Sinica 21, 192–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byrnes, C.I., Isidori, A.: On the attitude stabilization of a rigid spacecraft. Automatica 27, 87–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crouch, P.E.: Spacecraft attitude control and stabilization: Application of geometric control theory to rigid body models. IEEE Transactions on Automatic Control 29, 321–331 (1984)

    Article  MATH  Google Scholar 

  4. Krishnan, H., Reyhanoglu, M., McClamroch, N.H.: Attitude stabilization of a rigid spacecraft using two control torques: A nonlinear control approach based on the spacecraft attitude dynamics. Automatica 30, 87–95 (1994)

    MathSciNet  Google Scholar 

  5. Wang, D., Jia Y., Jin, L., et al.: Controllability of an underactuated spacecraft with one thruster under disturbance. Acta Mechanica Sinica 28, 838–847 (2012)

    Article  MathSciNet  Google Scholar 

  6. Aeyels, D., Szafranski, M.: Comments on the stabilizability of the angular velocity of a rigid body. Systems & Control Letters 10, 35–39 (1988).

    Article  MATH  Google Scholar 

  7. Zhang H., Wang, F., Trivailob, P.M.: Spin-axis stabilization of underactuated rigid spacecraft under sinusoidal disturbance. International Journal of Control 81, 1901–1909 (2009)

    Article  Google Scholar 

  8. Tsiotras, P., Luo, J. Control of underactuated spacecraft with bounded inputs. Automatica 36, 1153–1169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casagrandea, D., Astolfi, A., Parisini, T.: Global asymptotic stabilization of the attitude and the angular rates of an underactuated non-symmetric rigid body. Automatica 44, 1781–1789 (2008)

    Article  Google Scholar 

  10. Behal, A., Dawson, D., Zergeroglu E., et al.: Nonlinear tracking control of an underactuated spacecraft. Journal of Guidance, Control, and Dynamics 25, 256–263 (2002)

    Article  Google Scholar 

  11. Krishnan, H., McClamroch, N.H., Reyhanoglu, M.: Attitude stabilization of a rigid spacecraft using two momentum wheel actuators. Journal of Guidance, Control, and Dynamics 18, 256–263 (1995)

    Article  MATH  Google Scholar 

  12. Ge, X., Chen, L.: Optimal reorientaiton of underactuated spacecraft using genetic algorthm with wavelet approximation. Acta Mechanica Sinica 25, 547–533 (2009)

    Article  MATH  Google Scholar 

  13. Horri, N.M., Palmer, P.: Practical implementation of attitudecontrol algorithms for an underactuated satellite. Journal of Guidance, Control, and Dynamics 35, 40–50 (2012)

    Article  Google Scholar 

  14. Gui, H., Jin, L., Xu, S.: Attitude maneuver control of a twowheeled spacecraft with bounded wheel speeds. Acta Astronautica 88, 98–107 (2013)

    Article  Google Scholar 

  15. Marguiles, G., Aubrun, J.N.: Geometric theory of single gimbal control moment gyroscope systems. Journal of Astronautical Sciences 26, 159–191 (1978)

    Google Scholar 

  16. Wie, B.: Singularity analysis and visualization for singlegimbalcontrol moment gyro systems. Journal of Guidance, Control, and Dynamics 27, 271–282 (2004)

    Article  Google Scholar 

  17. Yoon, H., Tsiotras, P.: Singularity analysis of variable-speed control moment gyros. Journal of Guidance, Control, and Dynamics 27, 374–386 (2004)

    Article  Google Scholar 

  18. Kurokawa, H.: Survey of theory and steering laws of single gimbal control moment gyros. Journal of Guidance, Control, and Dynamics 30, 1331–1340 (2007)

    Article  MathSciNet  Google Scholar 

  19. Jin, J., Zhang, J., Liu, Z.: Error analysis and a new steering law design for spacecraft control system using SGCMGs. Acta Mechanica Sinica 27, 803–808 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, J., Rachid, A., Zhang, Y.: Attitude control for part actuator failure of agile small satellite. Acta Mechanica Sinica 24, 463–468 (2008)

    Article  MATH  Google Scholar 

  21. Meng, T., Matunaga, S.: Failure-tolerant control for small agile satellites using single-gimbal control moment gyros and magnetic torquers. Acta Mechanica Sinica 28, 551–558 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Zhang, J., Xu, S.: Influence of flexible solar arrays on vibration isolation platform of control moment gyroscopes. Acta Mechanica Sinica 28, 1479–1487 (2012)

    Article  MathSciNet  Google Scholar 

  23. Bhat, S., Tiwari, P.: Controllability of spacecraft attitude using control moment gyroscopes. IEEE Transactions on Automatic Control 54, 585–590 (2009)

    Article  MathSciNet  Google Scholar 

  24. Gui, H., Jin, L., Xu, S.: Analysis of small-time local controllability of spacecraft attitude using two control moment gyros. The 22nd AAS/AIAA Space Flight Mechanics Meeting, 1047–1058, Charleston, SC (2012)

    Google Scholar 

  25. Jin, L., Xu, S.: Underactuated spacecraft angular velocity stabilization and three-axis attitude stabilization using two single gimbal control moment gyros. ActaMechanica Sinica 26, 279–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yoon, H., Tsiotras, P.: Spacecraft line-of-sight control using a single variable speed control moment gyro. Journal of Guidance, Control, and Dynamics 29, 1295–1308 (2006)

    Article  Google Scholar 

  27. Kwon, S., Shimomura, T., Okubo, H.: Pointing control of spacecraft using two SGCMGs via LPV control theory. Acta Astronautica 68, 1168–1175 (2011)

    Article  Google Scholar 

  28. Han, C., Pechev, A.: Underactuated satellite attitude control with two parallel CMGs. In: Proc. of the IEEE International Conference on Control and Automation, 666–670, Guangzhou, China, June (2007)

    Google Scholar 

  29. Kasai, S., Kojima, H., Satoh, M.: Spacecraft attitude maneuver using two single-gimbal control moment gyros. Acta Astronautica 84, 88–89 (2013)

    Article  Google Scholar 

  30. Sussman, H.J.: Subanalytic sets and feedback control. Journal of Differential Equations 31, 31–52 (1979)

    Article  MathSciNet  Google Scholar 

  31. Coron, J.M.: On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws. SIAM Journal on Control and Optimization 33, 804–833 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Sussmann, H.J., eds. Differential Geometric Control Theory, Birkhäuser, Boston, MA, 181–191 (1983)

    Google Scholar 

  33. Bajodah, A.H.: Singularly perturbed feedback linearization with linear attitude deviation dynamics realization. Nonlinear Dynamics 53, 321–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hameduddin, I., Bajodah, A.H.: Nonlinear generalised dynamic inversion for aircraft maneuvering control. International Journal of Control 85, 437–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shuster, M.D.: A Survey of attitude representations. Journal of the Astronautical Sciences 41, 439–517 (1993)

    MathSciNet  Google Scholar 

  36. Sussmann, H.: A general theorem on local controllability. SIAM Journal on Control and Optimization 25, 158–194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Khalil, H.K.: Nonlinear Systems, (3rd edn.). New Jersey: Prentice Hall (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jin.

Additional information

The project was supported by the Innovation Foundation of BUAA for Ph.D Graduates and the Innovation Foundation of the National Laboratory of Space Intelligent Control.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, HC., Jin, L. & Xu, SJ. Attitude control of a rigid spacecraft with one variable-speed control moment gyro. Acta Mech Sin 29, 749–760 (2013). https://doi.org/10.1007/s10409-013-0067-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0067-5

Keywords

Navigation