Acta Mechanica Sinica

, Volume 29, Issue 4, pp 469–484 | Cite as

Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling

  • Bao-Hua JiEmail author
  • Bo HuoEmail author


Cell adhesion and migration are basic physiological processes in living organisms. Cells can actively probe their mechanical micro-environment and respond to the external stimuli through cell adhesion. Cells need to move to the targeting place to perform function via cell migration. For adherent cells, cell migration is mediated by cell-matrix adhesion and cell-cell adhesion. Experimental approaches, especially at early stage of investigation, are indispensable to studies of cell mechanics when even qualitative behaviors of cell as well as fundamental factors in cell behaviors are unclear. Currently, there is increasingly accumulation of experimental data of measurement, thus a quantitative formulation of cell behaviors and the relationship among these fundamental factors are highly needed. This quantitative understanding should be crucial to tissue engineering and biomedical engineering when people want to accurately regulate or control cell behaviors from single cell level to tissue level. In this review, we will elaborate recent advances in the experimental and theoretical studies on cell adhesion and migration, with particular focuses laid on recent advances in experimental techniques and theoretical modeling, through which challenging problems in the cell mechanics are suggested.


Cell mechanics Cell adhesion Cell migration Modeling Mechanobiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Franz, C.M., Jones, G.E., Ridley, A.J.: Cell migration in development and disease. Dev. Cell. 2, 153–158 (2002)CrossRefGoogle Scholar
  2. 2.
    Martin, P.: Wound healing-Aiming for perfect skin regeneration. Science 276, 75–81 (1997)CrossRefGoogle Scholar
  3. 3.
    Friedl, P., Weigelin, B.: Interstitial leukocyte migration and immune function. Nature Immunology 9, 960–969 (2008)CrossRefGoogle Scholar
  4. 4.
    Friedl, P., Gilmour, D.: Collective cell migration in morphogenesis, regeneration and cancer. Nature Reviews Molecular Cell Biology 10, 445–457 (2009)CrossRefGoogle Scholar
  5. 5.
    Friedl, P., Wolf, K.: Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer 3, 362–374 (2003)CrossRefGoogle Scholar
  6. 6.
    Balaban, N.Q., Schwarz, U.S., Riveline, D., et al.: Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biology 3, 466–472 (2001)CrossRefGoogle Scholar
  7. 7.
    Burton, K., Park, J.H., Taylor, D.L.: Keratocytes generate traction forces in two phases. Molecular Biology of the Cell 10, 3745–3769 (1999)CrossRefGoogle Scholar
  8. 8.
    Lock, J.G., Wehrle-Haller, B., Stromblad, S.: Cell-matrix adhesion complexes: Master control machinery of cell migration. Seminars in Cancer Biology 18, 65–76 (2008)CrossRefGoogle Scholar
  9. 9.
    Geiger, B., Bershadsky, A., Pankov, R., et al.: Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology 2, 793–805 (2001)CrossRefGoogle Scholar
  10. 10.
    Bershadsky, A.D., Balaban, N.Q., Geiger, B.: Adhesiondependent cell mechanosensitivity. Annual Review of Cell and Developmental Biology 19, 677–695 (2003)CrossRefGoogle Scholar
  11. 11.
    Giannone, G., Dubin-Thaler, B.J., Rossier, O., et al.: Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007)CrossRefGoogle Scholar
  12. 12.
    Geiger, B., Bershadsky, A.: Assembly and mechanosensory function of focal contacts. Current Opinion in Cell Biology 13, 584–592 (2001)CrossRefGoogle Scholar
  13. 13.
    Zaidel-Bar, R., Cohen, M., Addadi, L., et al.: Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions 32, (2004)Google Scholar
  14. 14.
    Cavalcanti-Adam, E.A., Volberg, T., Micoulet, A., et al.: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophysical Journal 92, 2964–2974 (2007)CrossRefGoogle Scholar
  15. 15.
    Ji, B., Bao, G.: Cell and molecular biomechanics: Perspectives and challenges. ActaMechanica Solida Sinica 24 27–51 (2011)Google Scholar
  16. 16.
    Wang, J., Yao, J., Gao, H.: Specific adhesion of a soft elastic body on a wavy surface. Theor. Appl. Mech. Lett. 2, 014002 (2012)CrossRefGoogle Scholar
  17. 17.
    Feng, S., Liang, H.: A coarse grain model of microtubules. Theor. Appl. Mech. Lett. 2, 014006 (2012)CrossRefGoogle Scholar
  18. 18.
    Bershadsky, A., Kozlov, M., Geiger, B.: Adhesion-mediated mechanosensitivity: A time to experiment, and a time to theorize. Current Opinion in Cell Biology 18, 472–481 (2006)CrossRefGoogle Scholar
  19. 19.
    Peng, X., Huang, J., Xiong, C., et al.: Cell adhesion nucleation regulated by substrate stiffness: A Monte Carlo study. Journal of Biomechanics 45, 116–122 (2012)CrossRefGoogle Scholar
  20. 20.
    Geiger, B., Bershadsky, A.: Exploring the neighborhood: Adhesion-coupled cell mechanosensors. Cell 110, 139–142 (2002)CrossRefGoogle Scholar
  21. 21.
    Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)CrossRefGoogle Scholar
  22. 22.
    Rape, A.D., Guo, W.-H., Wang, Y.-L.: The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32, 2043–2051 (2011)CrossRefGoogle Scholar
  23. 23.
    Elineni, K.K., Gallant, N.D.: Regulation of cell adhesion strength by peripheral focal adhesion distribution. Biophysical Journal 101, 2903–2911 (2011)CrossRefGoogle Scholar
  24. 24.
    Ji, B.: Editorial: Mechanics of biological and bio-inspired materials. Theor. Appl. Mech. Lett. 2, 014001 (2012)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Zheng, Q.: Determination of volumetric elastic moduli of plant leaf cells based on pressure-volume curves. Theor. Appl. Mech. Lett. 2, 014003 (2012)CrossRefGoogle Scholar
  26. 26.
    Xie, W., Xu, G., Feng, X.: Self-assembly of lipids and nanoparticles in aqueous solution: Self-consistent field simulations. Theor. Appl. Mech. Lett. 2, 014004 (2012)CrossRefGoogle Scholar
  27. 27.
    Qin, Z., Buehler, M.J.: Mechanical properties of crosslinks controls failure mechanism of hierarchical intermediate filament networks. Theor. Appl. Mech. Lett. 2, 014005 (2012)CrossRefGoogle Scholar
  28. 28.
    Galbraith, C.G., Sheetz, M.P.: Forces on adhesive contacts affect cell function. Current Opinion in Cell Biology 10, 566–571 (1998)CrossRefGoogle Scholar
  29. 29.
    Pelham, R.J., Wang, Y.-l.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94, 13661–13665 (1997)CrossRefGoogle Scholar
  30. 30.
    Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America 94, 849–854 (1997)CrossRefGoogle Scholar
  31. 31.
    Chatzizisis, Y.S., Coskun, A.U., Jonas, M., et al.: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling-Molecular, cellular, and vascular behavior. Journal of the American College of Cardiology 49, 2379–2393 (2007)CrossRefGoogle Scholar
  32. 32.
    Tsamis, A., Bothe, W., Kvitting, J.P., et al.: Active contraction of cardiac muscle: In vivo characterization of mechanical activation sequences in the beating heart. Journal of the Mechanical Behavior of Biomedical Materials 4, 1167–1176 (2011)CrossRefGoogle Scholar
  33. 33.
    Ochs, B.G., Muller-Horvat, C., Albrecht, D., et al.: Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. American Journal of Sports Medicine 39, 764–773 (2011)CrossRefGoogle Scholar
  34. 34.
    Hillyard, S.D., Willumsen, N.J., Marrero, M.B.: Stretchactivated cation channel from larval bullfrog skin. Journal of Experimental Biology 213, 1782–1787 (2010)CrossRefGoogle Scholar
  35. 35.
    Polacheck, W.J., Charest, J.L., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proceedings of the National Academy of Sciences of the United States of America 108, 11115–11120 (2011)CrossRefGoogle Scholar
  36. 36.
    Zarnitsyna, V.I., Zhu, C.: Adhesion frequency assay for in situ kinetics analysis of cross-junctional molecular interactions at the cell-cell interface. Journal of Visualized Experiments 57, e3519 (2011)Google Scholar
  37. 37.
    Long, M., Sato, M., Lim, C.T., et al.: Advances in experiments and modeling in micro-and nano-biomechanics: A mini review. Cellular and Molecular Bioengineering 4, 327–339 (2011)CrossRefGoogle Scholar
  38. 38.
    Adachi, T., Aonuma, Y., Tanaka, M., et al.: Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J. Biomech. 42, 1989–1995 (2009)CrossRefGoogle Scholar
  39. 39.
    Byfield, F.J., Reen, R.K., Shentu, T.P., et al.: Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J. Biomech. 42, 1114–1119 (2009)CrossRefGoogle Scholar
  40. 40.
    Brugues, J., Maugis, B., Casademunt, J., et al.: Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration. Proceedings of the National Academy of Sciences of the United States of America 107, 15415–15420 (2010)CrossRefGoogle Scholar
  41. 41.
    Nagayama, K., Matsumoto, T.: Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers. Journal of Biomechanics 43, 1443–1449 (2010)CrossRefGoogle Scholar
  42. 42.
    Wu, D., Ganatos, P., Spray, D.C., et al.: On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces. Journal of Biomechanics 44, 1702–1708 (2011)CrossRefGoogle Scholar
  43. 43.
    Huo, B., Lu, X.L., Costa, K.D., et al.: An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium 47, 234–241 (2010)CrossRefGoogle Scholar
  44. 44.
    Watanabe-Nakayama, T., Machida, S., Harada, I., et al.: Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy. Biophysical Journal 100, 564–572 (2011)CrossRefGoogle Scholar
  45. 45.
    Schillers, H., Walte, M., Urbanova, K., et al.: Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophysical Journal 99, 3639–3646 (2010)CrossRefGoogle Scholar
  46. 46.
    Huo, B., Lu, X.L., Guo, X.E.: Intercellular calcium wave propagation in linear and circuit-like bone cell networks. Philos. Transact. A Math. Phys. Eng. Sci. 368, 617–633 (2010)CrossRefGoogle Scholar
  47. 47.
    McKee, C.T., Raghunathan, V.K., Nealey, P.F., et al.: Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells. Biophysical Journal 101, 2139–2146 (2011)CrossRefGoogle Scholar
  48. 48.
    Sun, G.Y., Zhang, Y., Huo, B., et al.: Parametric analysis for monitoring 2D kinetics of receptor-ligand binding. Cellular and Molecular Bioengineering 2, 495–503 (2009)CrossRefGoogle Scholar
  49. 49.
    Zhang, X., Zhang, Y., Zheng, Y., et al.: Mechanical characteristics of human red blood cell membrane change due to C(60) nanoparticle infiltration. Physical Chemistry Chemical Physics 15, 2473–2481 (2013)CrossRefGoogle Scholar
  50. 50.
    Wang, K., Sun, D.: Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling. Journal of Biomechanics 45, 1900–1908 (2012)CrossRefGoogle Scholar
  51. 51.
    Zhang, H., Kay, A., Forsyth, N.R., et al.: Gene expression of single human mesenchymal stem cell in response to fluid shear. J. Tissue Eng. 3, 2041731412451988 (2012)Google Scholar
  52. 52.
    Hayakawa, K., Tatsumi, H., Sokabe, M.: Actin stress fibers transmit and focus force to activate mechanosensitive channels. Journal of Cell Science 121, 496–503 (2008)CrossRefGoogle Scholar
  53. 53.
    Fabry, B., Klemm, A.H., Kienle, S., et al.: Focal adhesion kinase stabilizes the cytoskeleton. Biophysical Journal 101, 2131–2138 (2011)CrossRefGoogle Scholar
  54. 54.
    Huo, B., Lu, X.L., Hung, C.T., et al.: Fluid flow induced calcium response in bone cell network. Cellular and Molecular Bioengineering 1, 58–66 (2008)CrossRefGoogle Scholar
  55. 55.
    Wayman, A.M., Chen, W., McEver, R.P., et al.: Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophysical Journal 99, 1166–1174 (2010)CrossRefGoogle Scholar
  56. 56.
    Rossi, M., Lindken, R., Hierck, B.P., et al.: Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab on a Chip 9, 1403–1411 (2009)CrossRefGoogle Scholar
  57. 57.
    Gossett, D.R., Tse, H.T., Lee, S.A., et al.: Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proceedings of the National Academy of Sciences of the United States of America 109, 7630–7635 (2012)CrossRefGoogle Scholar
  58. 58.
    Tavana, H., Zamankhan, P., Christensen, P.J., et al.: Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices 13, 731–742 (2011)CrossRefGoogle Scholar
  59. 59.
    Rahimzadeh, J., Meng, F., Sachs, F., et al.: Real-time observation of flow-induced cytoskeletal stress in living cells. Am J. Physiol. Cell Physiol. 301, C646–C652 (2011)CrossRefGoogle Scholar
  60. 60.
    Landenberger, B., Hofemann, H., Wadle, S., et al.: Microfluidic sorting of arbitrary cells with dynamic optical tweezers. Lab on a Chip 12, 3177–3183 (2012)CrossRefGoogle Scholar
  61. 61.
    Jiang, C., Shao, L., Wang, Q., et al.: Repetitive mechanical stretching modulates transforming growth factor-beta induced collagen synthesis and apoptosis in human patellar tendon fibroblasts. Biochemistry and Cell Biology 90, 667–674 (2012)CrossRefGoogle Scholar
  62. 62.
    Rui, Y.F., Lui, P.P., Ni, M., et al.: Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. Journal of Orthopaedic Research 29, 390–396 (2011)CrossRefGoogle Scholar
  63. 63.
    Kreja, L., Liedert, A., Schlenker, H., et al.: Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. Journal of Materials Science. Materials in Medicine 23, 2575–2582 (2012)CrossRefGoogle Scholar
  64. 64.
    Kalson, N.S., Holmes, D.F., Herchenhan, A., et al.: Slow stretching that mimics embryonic growth rate stimulates structural and mechanical development of tendon-like tissue in vitro. Developmental Dynamics 240, 2520–2528 (2011)CrossRefGoogle Scholar
  65. 65.
    Yeatts, A.B., Fisher, J.P.: Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone 48, 171–181 (2011)CrossRefGoogle Scholar
  66. 66.
    Skardal, A., Sarker, S.F., Crabbe, A., et al.: The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31, 8426–8435 (2010)CrossRefGoogle Scholar
  67. 67.
    Hong, S.Y., Jeon, Y.M., Lee, H.J., et al.: Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Molecular and Cellular Biochemistry 335, 263–272 (2010)CrossRefGoogle Scholar
  68. 68.
    Monticone, M., Liu, Y., Pujic, N., et al.: Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. Journal of Cellular Biochemistry 111, 442–452 (2010)CrossRefGoogle Scholar
  69. 69.
    Tamma, R., Colaianni, G., Camerino, C., et al.: Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J. 23, 2549–2554 (2009)CrossRefGoogle Scholar
  70. 70.
    Adachi, T., Aonuma, Y., Ito, S., et al.: Osteocyte calcium signaling response to bone matrix deformation. J. Biomech. 42, 2507–2512 (2009)CrossRefGoogle Scholar
  71. 71.
    Chan, M.E., Lu, X.L., Huo, B., et al.: A trabecular bone explant model of osteocyte-osteoblast co-culture for bone mechanobiology. Cell Mol. Bioeng. 2, 405–415 (2009)CrossRefGoogle Scholar
  72. 72.
    Zhou, X., Novotny, J.E., Wang, L.: Anatomic variations of the lacunar-canalicular system influence solute transport in bone. Bone 45, 704–710 (2009)CrossRefGoogle Scholar
  73. 73.
    Zhou, X., Novotny, J.E., Wang, L.: Modeling fluorescence recovery after photobleaching in loaded bone: Potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system. Ann. Biomed. Eng. 36, 1961–1977 (2008)CrossRefGoogle Scholar
  74. 74.
    Mitrossilis, D., Fouchard, J., Pereira, D., et al.: Real-time single-cell response to stiffness. Proceedings of the National Academy of Sciences of the United States of America 107, 16518–16523 (2010)CrossRefGoogle Scholar
  75. 75.
    Weng, S., Fu, J.: Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32, 9584–9593 (2011)CrossRefGoogle Scholar
  76. 76.
    Sen, S., Engler, A.J., Discher, D.E.: Matrix strains induced by cells: computing how far cells can feel. Cellular and Molecular Bioengineering 2, 39–48 (2009)CrossRefGoogle Scholar
  77. 77.
    Prager-Khoutorsky, M., Lichtenstein, A., Krishnan, R., et al.: Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nature Cell Biology 13, 1457–1465 (2011)CrossRefGoogle Scholar
  78. 78.
    Leight, J.L., Wozniak, M.A., Chen, S., et al.: Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Molecular Biology of the Cell 23, 781–791 (2012)CrossRefGoogle Scholar
  79. 79.
    Tse, J.R., Engler, A.J.: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6, e15978 (2011)CrossRefGoogle Scholar
  80. 80.
    Folkman, J., Moscona, A.: Role of cell shape in growth control. Nature 273, 345–349 (1978)CrossRefGoogle Scholar
  81. 81.
    Ingber, D.E.: Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proceedings of the National Academy of Sciences of the United States of America 87, 3579–3583 (1990)CrossRefGoogle Scholar
  82. 82.
    Chen, C.S., Mrksich, M., Huang, S., et al.: Geometric control of cell life and death. Science 276, 1425–1428 (1997)CrossRefGoogle Scholar
  83. 83.
    Chen, C.S., Mrksich, M., Huang, S., et al.: Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14, 356–363 (1998)CrossRefGoogle Scholar
  84. 84.
    Yan, C., Sun, J., Ding, J.: Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 32, 3931–3938 (2011)CrossRefGoogle Scholar
  85. 85.
    Oezkucur, N., Richter, E., Wetzel, C., et al.: Biological relevance of ion energy in-performance of human endothelial cells on ion-implanted flexible polyurethane surfaces. Journal of Biomedical Materials Research Part A 93A, 258–268 (2010)Google Scholar
  86. 86.
    Brunetti, V., Maiorano, G., Rizzello, L., et al.: Neurons sense nanoscale roughness with nanometer sensitivity. Proceedings of the National Academy of Sciences of the United States of America 107, 6264–6269 (2010)CrossRefGoogle Scholar
  87. 87.
    Liu, J., Tan, Y., Zhang, H., et al.: Soft fibrin gels promote selection and growth of tumorigenic cells. Nature Materials 11, 734–741 (2012)CrossRefGoogle Scholar
  88. 88.
    Aubin, H., Nichol, J.W., Hutson, C.B., et al.: Directed 3D cell alignment and elongation in microengineered hydrogels Biomaterials 31, 6941–6951 (2010)CrossRefGoogle Scholar
  89. 89.
    Huang, C.P., Lu, J., Seon, H., et al.: Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab on a Chip 9, 1740–1748 (2009)CrossRefGoogle Scholar
  90. 90.
    Tan, J.L., Tien, J., Pirone, D.M., et al.: From the Cover: Cells lying on a bed of microneedles: An approach to isolatemechanical force. Proceedings of the National Academy of Sciences 100, 1484–1489 (2003)CrossRefGoogle Scholar
  91. 91.
    Stricker, J., Aratyn-Schaus, Y., Oakes, P.W., et al.: Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophysical Journal 100, 2883–2893 (2011)CrossRefGoogle Scholar
  92. 92.
    Pompe, T., Kaufmann, M., Kasimir, M., et al.: Frictioncontrolled traction force in cell adhesion. Biophysical Journal 101, 1863–1870 (2011)CrossRefGoogle Scholar
  93. 93.
    Ricart, B.G., Yang, M.T., Hunter, C.A., et al.: Measuring traction forces of motile dendritic cells on micropost arrays. Biophysical Journal 101, 2620–2628 (2011)CrossRefGoogle Scholar
  94. 94.
    Lichtenstein, M.P., Madrigal, J.L., Pujol, A., et al.: JNK/ERK/FAK mediate promigratory actions of basic fibroblast growth factor in astrocytes via CCL2 and COX2. Neurosignals 20, 86–102 (2012)CrossRefGoogle Scholar
  95. 95.
    Trost, A., Desch, P., Wally, V., et al.: Aberrant heterodimerization of keratin 16 with keratin 6A in HaCaT keratinocytes results in diminished cellular migration. Mechanisms of Ageing and Development 131, 346–353 (2010)CrossRefGoogle Scholar
  96. 96.
    Rasanen, K., Vaheri, A.: Proliferation and motility of HaCaT keratinocyte derivatives is enhanced by fibroblast nemosis. Experimental Cell Research 316, 1739–1747 (2010)CrossRefGoogle Scholar
  97. 97.
    Kioka, N., Ito, T., Yamashita, H., et al.: Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo. Experimental Cell Research 316, 1728–1738 (2010)CrossRefGoogle Scholar
  98. 98.
    Yu, Y., Kuebler, J., Groos, S., et al.: Carbon dioxide modifies the morphology and function of mesothelial cells and facilitates transepithelial neuroblastoma cell migration. Pediatr. Surg. Int. 26, 29–36 (2010)CrossRefGoogle Scholar
  99. 99.
    Lee, Y.C., Lin, H.H., Hsu, C.H., et al.: Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. European Journal of Pharmacology 632, 23–32 (2010)CrossRefGoogle Scholar
  100. 100.
    Chen, C.S., Alonso, J.L., Ostuni, E., et al.: Cell shape provides global control of focal adhesion assembly. Biochemical and Biophysical Research Communications 307, 355–361 (2003)CrossRefGoogle Scholar
  101. 101.
    Humphries, J.D., Wang, P., Streuli, C., et al.: Vinculin controls focal adhesion formation by direct interactions with talin and actin. The Journal of Cell Biology 179, 1043–1057 (2007)CrossRefGoogle Scholar
  102. 102.
    Kong, D., Ji, B.H., Dai, L.H.: Stabilizing to disruptive transition of focal adhesion response to mechanical forces. Journal of Biomechanics 43, 2524–2529 (2010)CrossRefGoogle Scholar
  103. 103.
    Zhu, C., Bao, G., Wang, N.: Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering 2, 189–226 (2000)CrossRefGoogle Scholar
  104. 104.
    Evans, E.A.: Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular crossbridges. Biophysical Journal 48, 175–183 (1985)CrossRefGoogle Scholar
  105. 105.
    Ward, M.D., Hammer, D.A.: A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophysical Journal 64, 936–959 (1993)CrossRefGoogle Scholar
  106. 106.
    Kong, D., Ji, B., Dai, L.: Nonlinear mechanical modeling of cell adhesion. Journal of Theoretical Biology 250, 75–84 (2008)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Chen, S., Gao, H.: Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of the Royal Society A 462, 211–228 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Zhu, C.: Kinetics and mechanics of cell adhesion. Journal of Biomechanics 33, 23–33 (2000)CrossRefGoogle Scholar
  109. 109.
    Marshall, B.T., Long, M., Piper, J.W., et al.: Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003)CrossRefGoogle Scholar
  110. 110.
    Kong, D., Ji, B., Dai, L.: Stability of adhesion clusters and cell reorientation under lateral cyclic tension. Biophysical Journal 95, 4034–4044 (2008)CrossRefGoogle Scholar
  111. 111.
    Riveline, D., Zamir, E., Balaban, N.Q., et al.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent Mechanism. Journal of Cell Biology 153, 1175–1186 (2001)CrossRefGoogle Scholar
  112. 112.
    Kaunas, R., Nguyen, P., Usami, S., et al.: From The Cover: Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proceedings of the National Academy of Sciences of the United States of America 102, 15895–15900 (2005)CrossRefGoogle Scholar
  113. 113.
    Jungbauer, S., Gao, H., Spatz, J.P., et al.: Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys Journal 95, 3470–3478 (2008)CrossRefGoogle Scholar
  114. 114.
    Nicolas, A., Geiger, B., Safran, S.A.: Cell mechanosensitivity controls the anisotropy of focal adhesions Proceedings of the National Academy of Sciences 101, 12520–12525 (2004)CrossRefGoogle Scholar
  115. 115.
    Shemesh, T., Geiger, B., Bershadsky, A.D., et al.: Focal adhesions as mechanosensors: A physical mechanism. Proceedings of the National Academy of Sciences of the United States of America 102, 12383–12388 (2005)CrossRefGoogle Scholar
  116. 116.
    Dartsch, P., Hammerle, H.: Orientation response of arterial smooth muscle cells to mechanical stimulation. European Journal of Cell Biology 41, 339–346 (1986)Google Scholar
  117. 117.
    Neidlinger-Wilke, C., Grood, E.S., Wang, J.H.C., et al.: Cell alignment is induced by cyclic changes in cell length: Studies of cells grown in cyclically stretched substrates. Journal of Orthopaedic Research 19, 286–293 (2001)CrossRefGoogle Scholar
  118. 118.
    Wang, H.C., Ip, W., Boissy, R., et al.: Cell orientation response to cyclically deformed substrates: Experimental validation of a cell model. Journal of Biomechanics 28, 1543–1552 (1995)CrossRefGoogle Scholar
  119. 119.
    De, R., Zemel, A., Safran, S.A.: Dynamics of cell orientation. Nature Physics 3, 655–659 (2007)CrossRefGoogle Scholar
  120. 120.
    Qian, J., Wang, J., Gao, H.: Lifetime and strength of adhesive molecular bond clusters between elastic media. Langmuir 24, 1262–1270 (2008)CrossRefGoogle Scholar
  121. 121.
    Ji, B., Kong, D., Dai, L.H.: Dynamics of adhesion cluster and cell reorientation under lateral cyclic loading. Biorheology 45, 96–97 (2008)Google Scholar
  122. 122.
    Ji, B., Kong, D., Dai, L.: Modeling of stability of adhesion clusters and cell reorientation under lateral dynamics load. Biophysical Journal 96, 523a (2009)CrossRefGoogle Scholar
  123. 123.
    Zhong, Y., He, S., Ji, B.: Mechanicsin mechanosensitivity of cell adhesion and its roles in cell migration. International Journal of Computational Materials Science and Engineering 1, 1250032 (2012)CrossRefGoogle Scholar
  124. 124.
    Liu, B., Qu, M.-J., Qin, K.-R., et al.: Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys Journal 94, 1497–1507 (2008)CrossRefGoogle Scholar
  125. 125.
    Kaunas, R., Hsu, H.-J.: A kinematic model of stretch-induced stress fiber turnover and reorientation. Journal of Theoretical Biology 257, 320–330 (2009)MathSciNetCrossRefGoogle Scholar
  126. 126.
    Zhong, Y., Kong, D., Dai, L., et al.: Frequency-dependent focal adhesion instability and cell reorientation under cyclic substrate stretching. Cellular and Molecular Bioengineering 4, 442–456 (2011)CrossRefGoogle Scholar
  127. 127.
    Zaidel-Bar, R., Ballestrem, C., Kam, Z., et al.: Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. Journal of Cell Science 116, 4605–4613 (2003)CrossRefGoogle Scholar
  128. 128.
    Hamadi, A., Bouali, M., Dontenwill, M., et al.: Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. Journal of Cell Science 118, 4415–4425 (2005)CrossRefGoogle Scholar
  129. 129.
    Dagmar, I., Iain, D.C.: Integrin activation-The importance of a positive feedback. Bulletin ofMathematical Biology 68, 945–956 (2006)CrossRefGoogle Scholar
  130. 130.
    Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978)CrossRefGoogle Scholar
  131. 131.
    Rubinstein, B., Jacobson, K., Mogilner, A.: Multiscale twodimensional modeling of a motile simple-shaped cell. Multiscale Modeling & Simulation 3, 413–439 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Mogilner, A.: Mathematics of cell motility: Have we got its number? Journal of Mathematical Biology 58, 105–134 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Lan, Y., Papoian, G.A.: The stochastic dynamics of filopodial growth. Biophysical Journal 94, 3839–3852 (2008)CrossRefGoogle Scholar
  134. 134.
    Dokukina, I.V., Gracheva, M.E.: A model of fibroblast motility on substrates with different rigidities. Biophysical Journal 98, 2794–2803 (2010)CrossRefGoogle Scholar
  135. 135.
    Sarvestani, A.S., Jabbari, E.: Modeling the kinetics of cell membrane spreading on substrates with ligand density gradient. Journal of Biomechanics 41, 921–925 (2008)CrossRefGoogle Scholar
  136. 136.
    Harland, B., Walcott, S., Sun, S.X.: Adhesion dynamics and durotaxis in migrating cells. Physical Biology 8, 015011 (2011)CrossRefGoogle Scholar
  137. 137.
    Zhong, Y., Ji, B.: Impact of cell shape on cell migration behavior on elastic substrate. Biofabrication 5, 015011 (2013)CrossRefGoogle Scholar
  138. 138.
    Soltysova, A., Altanerova, V., Altaner, C.: Cancer stem cells. Neoplasma 52, 435–440 (2005)Google Scholar
  139. 139.
    Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRefGoogle Scholar
  140. 140.
    Du, J., Chen, X., Liang, X., et al.: Integrin activation and internalization on soft ECMas a mechanism of induction of stem cell differentiation by ECM elasticity. Proceedings of the National Academy of Sciences of the United States of America 108, 9466–9471 (2011)CrossRefGoogle Scholar
  141. 141.
    Guilak, F., Cohen, D.M., Estes, B.T., et al.: Control of stem cell fate by physical interactions with the extracellular matrix. Stem Cell 5, 17–26 (2009)Google Scholar
  142. 142.
    Holtzer, H., Abbott, J., Lash, J., et al.: The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells. Proceedings of the National Academy of Sciences of the United States of America 46, 1533–1542 (1960)CrossRefGoogle Scholar
  143. 143.
    Abbott, J., Holtzer, H.: The loss of phenotypic traits by differentiated cells. The reversible behavior of chondrocytes in primary cultures. Journal of Cell Biology 28, 473–487 (1966)CrossRefGoogle Scholar
  144. 144.
    Hoben, G.M., Koay, E.J., Athanasiou, K.A.: Fibrochondrogenesis in two embryonic stem cell lines: Effects of differentiation timelines. Stem Cells 26, 422–430 (2008)CrossRefGoogle Scholar
  145. 145.
    Li, Z.H., Sun, S.J., Long, M.: Proliferation, differentiation, and migration of rat bone marrow mesenchymal stem cells on micropatterned substrate J. Med. Biomech. 24, 256–262 (2009)Google Scholar
  146. 146.
    Guvendiren, M., Burdick, J.A.: The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)CrossRefGoogle Scholar
  147. 147.
    Thomas, C.H., Collier, J.H., Sfeir, C.S., et al.: Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 99, 1972–1977 (2002)CrossRefGoogle Scholar
  148. 148.
    Connelly, J.T., Gautrot, J.E., Trappmann, B., et al.: Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biology 12, 711–718 (2010)CrossRefGoogle Scholar
  149. 149.
    Singhvi, R., Kumar, A., Lopez, G.P., et al.: Engineering cell shape and function. Science 264, 696–698 (1994)CrossRefGoogle Scholar
  150. 150.
    Born, A.K., Rottmar, M., Lischer, S., et al.: Correlating cell architecture with osteogenesis: First steps towards live single cell monitoring. European Cells and Materials 18, 49–62 (2009)Google Scholar
  151. 151.
    Watt, F.M., Jordan, P.W., O’Neill, C.H.: Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl. Acad. Sci. U.S.A. 85, 5576–5580 (1988)CrossRefGoogle Scholar
  152. 152.
    McBeath, R., Pirone, D.M., Nelson, C.M., et al.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004)CrossRefGoogle Scholar
  153. 153.
    Song, W., Kawazoe, N., Chen, G.P.: Dependence of spreading and differentiation of mesenchymal stem cells on micropatterned surface area. Journal of Nanomaterials 2011, 1–9 (2011)CrossRefGoogle Scholar
  154. 154.
    Gao, L., McBeath, R., Chen, C.S.: Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and Ncadherin. Stem. Cells 28, 564–572 (2010)Google Scholar
  155. 155.
    McBeath, R., Pirone, D.M., Nelson, C.M., et al.: Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Developmental Cell 6, 483–495 (2004)CrossRefGoogle Scholar
  156. 156.
    Kearney, E.M., Prendergast, P.J., Campbell, V.A.: Mechanisms of strain-mediated mesenchymal stem cell apoptosis. Journal of Biomechanical Engineering 130, 061004 (2008)CrossRefGoogle Scholar
  157. 157.
    Li, L., Neaves, W.B.: Normal stem cells and cancer stem cells: The niche matters. Cancer Research 66, 4553–4557 (2006)CrossRefGoogle Scholar
  158. 158.
    Watt, F.M., Hogan, B.L.: Out of Eden: Stem cells and their niches. Science 287, 1427–1430 (2000)CrossRefGoogle Scholar
  159. 159.
    Fuchs, E., Tumbar, T., Guasch, G.: Socializing with the neighbors: Stem cells and their niche. Cell 116, 769–778 (2004)CrossRefGoogle Scholar
  160. 160.
    Song, X., Xie, T.: DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proceedings of the National Academy of Sciences of the United States of America 99, 14813–14818 (2002)CrossRefGoogle Scholar
  161. 161.
    Lowry, W.E., Blanpain, C., Nowak, J.A., et al.: Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes and Development 19, 1596–1611 (2005)CrossRefGoogle Scholar
  162. 162.
    Jensen, U.B., Lowell, S., Watt, F.M.: The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: A new view based on whole-mount labelling and lineage analysis. Development (Cambridge, England) 126, 2409–2418 (1999)Google Scholar
  163. 163.
    Zhu, A.J., Haase, I., Watt, F.M.: Signaling via β1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proceedings of the National Academy of Sciences of the United States of America 96, 6728–6733 (1999)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biomechanics and Biomaterials Laboratory, School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations