Advertisement

Acta Mechanica Sinica

, Volume 29, Issue 4, pp 543–549 | Cite as

Control of surface wettability via strain engineering

  • Wei Xiong
  • Jefferson Zhe LiuEmail author
  • Zhi-Liang Zhang
  • Quan-Shui ZhenEmail author
Research Paper

Abstract

Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sample material and molecular dynamic simulations, we demonstrate that strain engineering can serve as an effective way to control the surface wettability. The contact angles θ of water droplets on a graphene vary from 72.5° to 106° under biaxial strains ranging from −10% to 10% that are applied on the graphene layer. For an intrinsic hydrophilic surface (at zero strain), the variation of θ upon the applied strains is more sensitive, i.e., from 0° to 74.8°. Overall the cosines of the contact angles exhibit a linear relation with respect to the strains. In light of the inherent dependence of the contact angle on liquid-solid interfacial energy, we develop an analytic model to show the cos θ as a linear function of the adsorption energy E ads of a single water molecule over the substrate surface. This model agrees with our molecular dynamic results very well. Together with the linear dependence of E ads on biaxial strains, we can thus understand the effect of strains on the surface wettability. Thanks to the ease of reversibly applying mechanical strains in micro/nano-electromechanical systems, we believe that strain engineering can be a promising means to achieve the reversibly control of surface wettability.

Keywords

Wettability Strain engineering Molecular dynamic simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nakajima, A.: Design of hydrophobic surfaces for liquid droplet control. NPG Asia Materials 3, 49–56 (2011)CrossRefGoogle Scholar
  2. 2.
    Quéré, D.: Wetting and roughness. Annual Review of Materials Research 38, 71–99 (2008)CrossRefGoogle Scholar
  3. 3.
    Sun, T., Feng, L., Gao, X., et al.: Bioinspired surfaces with special wettability. Accounts of Chemical Research 39, 487–487 (2006)CrossRefGoogle Scholar
  4. 4.
    Li, C., Wang, Z., Wang, P.I., et al.: Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, R., Lu, M.C., Srinivasan, V., et al.: Nanowires for enhanced boiling heat transfer. Nano Letters 9, 548–553 (2009)CrossRefGoogle Scholar
  6. 6.
    Feng, L., Li, S., Li, Y., et al.: Super-hydrophobic surfaces: From natural to artificial. Advanced Materials 14, 1857–1860 (2002)CrossRefGoogle Scholar
  7. 7.
    Zheng, Q.S., Lü, C.J., Hao, P.F., et al.: Small is beautiful, and dry. Science China-Physics Mechanics & Astronomy 553, 2245–2259 (2010)CrossRefGoogle Scholar
  8. 8.
    Shin, Y.J., Wang, Y.Y., Huang, H., et al.: Surface-energy engineering of graphene. Langmuir 26, 3798–3802 (2010)CrossRefGoogle Scholar
  9. 9.
    Rafiee, J., Rafiee, M.A., Yu, Z., et al.: Superhydrophobic to superhydrophilic wetting control in graphenefilms. Adv. Mater. 22, 2151–2154 (2010)CrossRefGoogle Scholar
  10. 10.
    Callies, M., Quéré, D.: On water repellency. Soft Matter 1, 55–61 (2005)CrossRefGoogle Scholar
  11. 11.
    Krupenkin, T.N., Taylor, J.A., Schneider, T.M., et al.: From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 3824–3827 (2004)CrossRefGoogle Scholar
  12. 12.
    Ichimura, K., Oh, S.K., Nakagawa, M.: Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000)CrossRefGoogle Scholar
  13. 13.
    Feng, C.L., Zhang, Y.J., Jin, J., et al.: Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in langmuir-blodgett films. Langmuir 17, 4593–4597 (2001)CrossRefGoogle Scholar
  14. 14.
    Abbott, N.L., Gorman, C.B., Whitesides, G.M.: Active control of wetting using applied electrical potentials and self-assembled monolayers. Langmuir 11, 16–18 (1995)CrossRefGoogle Scholar
  15. 15.
    Gallardo, B.S., Gupta, V.K., Eagerton, F.D., et al.: Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–60 (1999)CrossRefGoogle Scholar
  16. 16.
    Lahann, J., Mitragotri, S., Tran, T.N., et al.: A reversibly switching surface. Science 299, 371–374 (2003)CrossRefGoogle Scholar
  17. 17.
    Mettu, S., Chaudhury, M.K.: Motion of drops on a surface induced by thermal gradient and vibration. Langmuir 24, 10833–10837 (2008)CrossRefGoogle Scholar
  18. 18.
    Yuan, Q., Zhao, Y.P.: Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Physical Review Letters 104, 246101 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhu, X., Yuan, Q., Zhao, Y.P.: Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity. Scientific Reports 2, 927 (2012)CrossRefGoogle Scholar
  20. 20.
    Mugele, F.: Wetting: Unobtrusive graphene coatings. Nature Materials 11, 182–183 (2012)CrossRefGoogle Scholar
  21. 21.
    Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995)zbMATHCrossRefGoogle Scholar
  22. 22.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)CrossRefGoogle Scholar
  23. 23.
    Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numericalintegration of cartesian equations of motion of a system with constraints: Molecular-dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)CrossRefGoogle Scholar
  24. 24.
    Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Institute of Physics (1992)Google Scholar
  25. 25.
    Werder, T., Walther, J.H., Jaffe, R.L., et al.: On the watercarbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003)CrossRefGoogle Scholar
  26. 26.
    Mattia, D., Gogotsi, Y.: Review: Static and dynamic behavior of liquids inside carbon nanotubes. Microfluidics and Nanofluidics 5, 289–305 (2008)CrossRefGoogle Scholar
  27. 27.
    Weijs, J.H., Marchand, A., Andreotti, B., et al.: Origin of line tension for a lennard-jones nanodroplet. Phys. Fluids 23, 022001 (2011)CrossRefGoogle Scholar
  28. 28.
    Amirfazli, A., Neumann, A.W.: Status of the three-phase line tension. Adv. Colloid Interface Sci. 110, 121–141 (2004)CrossRefGoogle Scholar
  29. 29.
    Pompe, T., Herminghaus, S.: Three-phase contact line energetics from nanoscale liquid surfacetopographies. Phys. Rev. Lett. 85, 1930–1933 (2000)CrossRefGoogle Scholar
  30. 30.
    Duncan, D., Li, D., Gaydos, J., et al.: Correlation of line tension and solid-liquid interfacial tension from the measurement of drop size dependence of contact angles. Journal of Colloid and Interface Science 169, 256–261 (1995)CrossRefGoogle Scholar
  31. 31.
    Amirfazli, A., Chatain, D., Neumann, A.W.: Drop size dependence of contact angles for liquid tin on silica surface: Line tension and its correlation with solid-liquid interfacial tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects 142, 183–188 (1998)CrossRefGoogle Scholar
  32. 32.
    Israelachvili, J.N.: Intermolecular and Surface Forces. (3rd edn.) Academic Press, Waltham, Massachusetts, USA (2011)Google Scholar
  33. 33.
    Seemann, R., Herminghaus, S., Jacobs, K.: Dewetting patterns and molecular forces: A reconciliation. Physical Review Letters 86, 5534–5537 (2001)CrossRefGoogle Scholar
  34. 34.
    Xiong, W., Liu, J.Z., Ma, M., et al.: Strain engineering water transport in graphene nanochannels. Phys. Rev. E 84, 056329 (2011)CrossRefGoogle Scholar
  35. 35.
    Shih, C.J., Wang, Q.H., Lin, S., et al.: Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012)CrossRefGoogle Scholar
  36. 36.
    Ni, Z.H., Yu, T., Lu, Y.H., et al.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008)CrossRefGoogle Scholar
  37. 37.
    Mohiuddin, T.M.G., Lombardo, A., Nair, R.R., et al.: Uniaxial strain in graphene by raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation. Physical Review B 79, 205433 (2009)CrossRefGoogle Scholar
  38. 38.
    Kim, K.S., Zhao, Y., Jang, H., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)CrossRefGoogle Scholar
  39. 39.
    Pan, Y., Zhang, H., Shi, D., et al.: Highly ordered, millimeterscale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Advanced Materials 21, 2777–2780 (2009)CrossRefGoogle Scholar
  40. 40.
    Ni, Z.H., Chen, W., Fan, X.F., et al.: Raman spectroscopy of epitaxial graphene on a sic substrate. Physical Review B 77, 115416 (2008)CrossRefGoogle Scholar
  41. 41.
    Wintterlin, J., Bocquet, M.L.: Graphene on metal surfaces. Surface Science 603, 1841–1852 (2009)CrossRefGoogle Scholar
  42. 42.
    Yamamoto, T., Taya, M.: Reversible strain induced by martensite variant rearrangement under magnetic field and mechanical loading of Fe-Pd single crystals. Applied Physics Letters 90, 251905–3 (2007)CrossRefGoogle Scholar
  43. 43.
    Zhang, J.X., Xiang, B., He, Q., et al.: Large field-induced strains in a lead-free piezoelectric material. Nature Nanotechnology 6, 98–102 (2011)CrossRefGoogle Scholar
  44. 44.
    Voronov, R.S., Papavassiliou, D.V., Lee, L.L.: Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Industrial & Engineering Chemistry Research 47, 2455–2477 (2008)CrossRefGoogle Scholar
  45. 45.
    Ho, T.A., Papavassiliou, D.V., Lee, L.L., et al.: Liquid water can slip on a hydrophilic surface. Proc. Natl. Acad. Sci. 108, 16170–16175 (2011)CrossRefGoogle Scholar
  46. 46.
    Neto, C., Evans, D.R., Bonaccurso, E., et al.: Boundary slip in Newtonian liquids: A review of experimental studies. Reports on Progress in Physics 68, 2859–2897 (2005)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Engineering Mechanics and Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonAustralia
  3. 3.Department of Structural EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations