Acta Mechanica Sinica

, Volume 29, Issue 4, pp 612–621 | Cite as

Poroelastic behaviors of the osteon: A comparison of two theoretical osteon models

  • Xiao-Gang Wu
  • Wei-Yi ChenEmail author
Research Paper


In the paper, two theoretical poroelastic osteon models are presented to compare their poroelastic behaviors, one is the hollow osteon model (Haversian fluid is neglected) and the other is the osteon model with Haversian fluid considered. They both have the same two types of impermeable exterior boundary conditions, one is elastic restraint and the other is displacement constrained, which can be used for analyzing other experiments performed on similarly shaped poroelastic specimens. The obtained analytical pressure and velocity solutions demonstrate the effects of the loading factors and the material parameters, which may have a significant stimulus to the mechanotransduction of bone remodeling signals. Model comparisons indicate: (1) The Haversian fluid can enhance the whole osteonal fluid pressure and velocity fields. (2) In the hollow model, the key loading factor governing the poroelastic behavior of the osteon is strain rate, while in the model with Haversian fluid considered, the strain rate governs only the velocity. (3) The pressure amplitude is proportional to the loading frequency in the hollow model, while in the model with Haversian fluid considered, the loading frequency has little effect on the pressure amplitude.


Osteon Poroelasticity Haversian fluid Pore pressure Annular cylinder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, X.G., Chen, W.Y., Gao, Z.P., et al.: The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China-physics Mechanics & Astronomy 55, 1646–1656 (2012)CrossRefGoogle Scholar
  2. 2.
    Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)CrossRefGoogle Scholar
  3. 3.
    Weinbaum, S., Cowin, S.C., Zeng, Y.: A Model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994)CrossRefGoogle Scholar
  4. 4.
    Zeng, Y., Cowin, S.C., Weinbaum, S.: A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Ann. Biomed. Eng. 22, 280–292 (1994)CrossRefGoogle Scholar
  5. 5.
    Rémond, A., Naili, S., Lemaire, T.: Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: A finite element study. Biomech Model Mechanobiol 7, 487–495 (2008)CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Weinbaum, S., Cowin, S.C.: On the calculation of bone pore water pressure due to mechanical loading. Int. J. Solids Struct. 35, 4981–4997 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rémond, A., Naili, S.: Transverse isotropic poroelastic osteon model under cyclic loading. Mech. Res. Commun. 32, 645–651 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Manfredini, P., Cocchetti, G., Maier, G., et al.: Poroelastic finite element analysis of a bone specimen under cyclic loading. J. Biomech. 32, 135–144 (1999)CrossRefGoogle Scholar
  9. 9.
    Nguyen, V.H., Lemaire, T., Naili, S.: Numerical study of deformation-induced fluid flows in periodic osteonal matrix under harmonic axial loading. C. R. Mecanique 337, 268–276 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Nguyen, V.H., Lemaire, T., Naili, S.: Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings: Relevance to bone osteons. Multidiscipline Model Mater. Struct. 5, 205–222 (2009)Google Scholar
  11. 11.
    Nguyen, V.H., Lemaire, T., Naili, S.: Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale. Med. Eng. Phys. 32, 384–390 (2010)CrossRefGoogle Scholar
  12. 12.
    Gailani, G.B., Cowin, S.C.: The unconfined compression of a poroelastic annular cylindrical disk. Mechanics of Materials 6, 507–523 (2008).CrossRefGoogle Scholar
  13. 13.
    Wu, X.G., Chen, W.Y.: A hollow osteon model for examining its poroelastic behaviors: Mathematically modeling an osteon with different boundary cases. European Journal of Mechanics/A Solids 40, 34–49 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hoang, S., Abousleiman, Y.: Poroviscoelasticity of transversely isotropic cylinders under laboratory loading conditions. Mechanics Research Communications 37, 298–306 (2010)CrossRefGoogle Scholar
  15. 15.
    Fritton, S.P., Kenneth, J.M., Rubin, C.T.: Quantifying the strain history of bone: Spatial uniformity and self-similarity of low magnitude strains. J. Biomech. 33, 317–325 (2000)CrossRefGoogle Scholar
  16. 16.
    Cowin, S.C.: Mechanosensation and fluid transport in living bone. J. Musculoskel. Neuron. Interact. 2, 256–260 (2002)Google Scholar
  17. 17.
    Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)CrossRefGoogle Scholar
  18. 18.
    Beno, T., Yoon, Y.J., Cowin, S.C., et al.: Estimation of bone permeability using accurate microstructural measurements. J. Biomech. 39, 2378–2387 (2006)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Fritton, S.P., Cowin, S.C., et al.: Fluid pressure relaxation depends upon osteonal microstructure: Modeling an oscillatory bending experiment. J. Biomech. 32, 663–672 (1999)CrossRefGoogle Scholar
  20. 20.
    Smit, T.H., Huyghe, J.M.., Cowin, S.C.: Estimation of the poroelastic parameters of cortical bone. J. Biomech. 35, 829–835 (2002)CrossRefGoogle Scholar
  21. 21.
    Anderson, E., Kreuzer, S., Small, O., et al.: Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid Nanofluids 4, 193–204 (2008)CrossRefGoogle Scholar
  22. 22.
    Goulet, G.C., Coombe, D., Martinuzzi, R.J., et al.: Poroelastic evaluation of fluid movement through the lacunocanalicular system. Ann. Biomed. Eng. 37, 1390–1402 (2009)CrossRefGoogle Scholar
  23. 23.
    Kameo, Y., Adachi, T., Hojo, M.: Fluid pressure response in poroelastic materials subjected to cyclic loading. J. Mech. Phys. Solids 57, 1815–1827 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Oyen, M.L.: Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23, 1307–1314 (2008)CrossRefGoogle Scholar
  25. 25.
    Galli, M., Oyen, M.L.: Fast identification of poroelastic parameters from indentation tests. Cmes. Comp. Model Eng. 48, 241–270 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Gailani, G., Benalla, M., Mahamud, R., et al.: Experimental determination of the permeability in the lacunar-canalicular porosity of bone. J. Biomech. Eng. 131, 101007 (2009)CrossRefGoogle Scholar
  27. 27.
    Gardinier, J.D., Townend, C.W., Jen, K.P., et al.: In situ permeability measurement of the mammalian lacunar-canalicular system. Bone 46, 1075–1081 (2010)CrossRefGoogle Scholar
  28. 28.
    Curtis, T.A., Ashrafti, S.H., Weber, D.F.: Canalicular communication in the cortices of human long bone. Anat. Rec. 212, 336–344 (1985)CrossRefGoogle Scholar
  29. 29.
    Yoon, Y.J., Cowin, S.C.: An estimate of anisotropic poroelastic constants of an osteon. Biomechan Model Mechanobiol 7, 13–26 (2008)CrossRefGoogle Scholar
  30. 30.
    Yoon, Y.J., Cowin, S.C.: The elastic moduli estimation of the solid-water mixture. Int. J. Solids Struct. 46, 527–533 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of MechanicsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations