Acta Mechanica Sinica

, Volume 29, Issue 4, pp 622–632 | Cite as

On the van der Waals interaction of carbon nanotubes as electromechanical nanothermometers

  • R. AnsariEmail author
  • M. Daliri
  • M. Hosseinzadeh
Research Paper


Electromechanical carbon nanothermometers are devices that work based on the interactions and relative motions of double-walled carbon nanotubes (DWCNTs). In this paper, the mechanics of carbon nanotubes (CNTs) constituting two well-known configurations for nanothermometer, namely shuttle configuration and telescope configuration are fully investigated. Lennard-Jones (LJ) potential function along with the continuum approximation is employed to investigate van derWaals (vdW) interactions between the interacting entities. Accordingly, semi-analytical expressions in terms of single integrals are obtained for vdW interactions. Acceptance condition and suction energy are studied for the shuttle configuration. In addition, a universal potential energy is presented for the shuttle configuration consisting of two finite CNTs. Also, for the telescope configuration, extensive studies are performed on the distributions of potential energy and interaction force for various radii and lengths of CNTs. It is found that these geometrical parameters have a considerable effect on the potential energy.


Electromechanical carbon nanothermometer Continuum approximation Carbon nanotubes van der Waals interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    Ajayan, P.M., Ebbesen. T.W.: Nanometre-size tubes of carbon. Rep. Prog. Phys. 60, 1025–1062 (1997)CrossRefGoogle Scholar
  3. 3.
    Wei, B.Q., Vajtai, R., Ajayan, P.M.: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001)CrossRefGoogle Scholar
  4. 4.
    Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787–92 (2002)CrossRefGoogle Scholar
  5. 5.
    Lozovik, Yu.E., Nikolaev, A.G., Popov, A.M.: Nanotube-based nanoelectromechanical systems. J. Exp. Theor. Phys. 103, 449–462 (2006)CrossRefGoogle Scholar
  6. 6.
    Maslov, L.: Concept of nonvolatile memory based on multiwall carbon nanotubes. Nanotechnology 17, 2475–2482 (2006)CrossRefGoogle Scholar
  7. 7.
    Popov, A.M., Lozovik, Yu.E., Bichoutskaia, E., et al.: An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Phys. Solid State 51, 1306–1314 (2009)CrossRefGoogle Scholar
  8. 8.
    Tu, Z.C., Hu, X.: Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage. Phys. Rev. B: Condens. Matter 72, 033404–033407 (2005)CrossRefGoogle Scholar
  9. 9.
    Lozovik, Yu.E., Minogin, A.V., Popov, A.M.: Possible nanomachines: Nanotube walls as movable elements. JETP Lett. 77, 759–631 (2003)CrossRefGoogle Scholar
  10. 10.
    Lozovik, Yu.E., Popov, A.M.: Nanomachines Based on carbon nanotubes walls motion: Operation modes and control forces. Fuller. Nanotub. Car. N. 12, 485–492 (2004)Google Scholar
  11. 11.
    Bichoutskaia, E., Heggie, M.I., Lozovik, Yu.E., et al.: Multiwalled nanotubes: Commensurate-incommensurate phase transition and NEMS applications. Fuller. Nanotub. Car. N. 14, 131–140 (2006)CrossRefGoogle Scholar
  12. 12.
    Lozovik, Yu.E., Minogin, A.V., Popov, A.M.: Nanomachines based on carbon nanotubes. Phys. Lett. A 313, 112–125 (2003)CrossRefGoogle Scholar
  13. 13.
    Liu, P., Zhang, Y.W., Lu, C.: Oscillatory behavior of C60-nanotube oscillators: A molecular-dynamics study. J. Appl. Phys. 97, 094313–094316 (2005)CrossRefGoogle Scholar
  14. 14.
    Kang, J.W., Song, K.O., Hwang, H.J., et al.: Nanotube oscillator based on a short single-walled carbon nanotube bundle. Nanotechnology 17, 2250–2258 (2006)CrossRefGoogle Scholar
  15. 15.
    Gao, Y., Bando, Y., Liu, Z., et al.: Temperature measurement using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 83, 2913–2915 (2003)CrossRefGoogle Scholar
  16. 16.
    Liu, Z., Bando, Y., Mitome, M., et al.: Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Phys. Rev. Lett. 93, 095504–095508 (2004)CrossRefGoogle Scholar
  17. 17.
    Bichoutskaia, E., Popov, A.M., Lozovik, Y.E., et al.: Electromechanical nanothermometer. Phys. Lett. A 366, 480–486 (2007)CrossRefGoogle Scholar
  18. 18.
    Rahmat, F., Thamwattana, N., Hill, J.M.: Carbon nanotube oscillators for applications as nanothermometers. J. Phys. A: Math. Theor. 43, 405209–405234 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ansari, R., Mahmoudinezhad, E., Alipour, A., et al.: A comprehensive study on the encapsulation of methane in single-walled carbon nanotubes. J. Comput. Theoret. Nanosci. 10, 2209–2215 (2012)CrossRefGoogle Scholar
  20. 20.
    Ansari, R., Motevalli. B.: On new aspects of Nested carbon nanotubes as gigahertz oscillators. J. Vib. Acoust. 133, 051003 (2011)CrossRefGoogle Scholar
  21. 21.
    Girifalco, L.A, Hodak, M., Lee, R.S.: Carbon nanotubes, buckyballs, ropes and a universal graphitic potential. Phys. Rev. B. 62, 104–110 (2000)CrossRefGoogle Scholar
  22. 22.
    Hilder, T.A., Hill, J.M.: Continuous versus discrete for interacting carbon nanostructures. J. Phys. A: Math. Theor. 40, 3851–3868 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Ansari, R., Alisafaei, F., Alipour, A., et al.: On the van der Waals interaction of carbon nanocones. J. Phys. Chem. Solids 73, 751–756 (2012)CrossRefGoogle Scholar
  24. 24.
    Ansari, R., Sadeghi, F., Ajori, S.: Continuum and molecular dynamics study of C60 fullerene-carbon nanotube oscillators. Mech. Res. Commun. 47, 18–23 (2012)CrossRefGoogle Scholar
  25. 25.
    Cox, B.J., Thamwattana, N., Hill, J.M.: Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory behavior. Proc. R. Soc. A 463, 477–494 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Cox, B.J., Thamwattana, N., Hill, J.M.: Mechanics of nanotubes oscillating in carbon nanotube bundles. Proc. R. Soc. A 464, 691–710 (2008)zbMATHCrossRefGoogle Scholar
  27. 27.
    Baowan, D., Hill, J.M.: Force distribution for double-walled carbon nanotubes and gigahertz oscillators. Z. Angew. Math. Phys. 58, 857–875 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Rance, G.A., Marsh, D.H., Bourne, S.J., et al.: van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano 4, 4920–4928 (2010)CrossRefGoogle Scholar
  29. 29.
    Henrard, L., Hernández, E., Bernier, P., et al.: van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Phys. Rev. B 60, R8521–R8524 (1999)CrossRefGoogle Scholar
  30. 30.
    Popescu, A., Woods, L.M., Bondarev. I.V.: Simple model of van der Waals interactions between two radially deformed single-wall carbon nanotubes. Phys. Rev. B 77, 115443–115452 (2008)CrossRefGoogle Scholar
  31. 31.
    Blagov, E.V., Klimchitskaya, G.L., Mostepanenko, V.M.: van der Waals interaction between a microparticle and a singlewalled carbon nanotube. Phys. Rev. B 75 235413–235420 (2007)CrossRefGoogle Scholar
  32. 32.
    Legoas, S.B., Coluci, V.R., Braga, S.F., et al.: Moleculardynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90 055504–055507 (2003)CrossRefGoogle Scholar
  33. 33.
    Zheng, Q., Jiang, Q.: Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88, 045503–045505 (2002)CrossRefGoogle Scholar
  34. 34.
    Zheng, Q., Liu, J.Z., Jiang. Q.: Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Phys. Rev. B 65, 245409–245414 (2002)CrossRefGoogle Scholar
  35. 35.
    Sun, C.H., Yin, L.C., Li, F., et al.: Van der Waals interactions between two parallel infinitely long single-walled nanotubes. Chem. Phys. Lett. 403, 343–346 (2005)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations