Skip to main content
Log in

Chemical expansion of solid oxide fuel cell materials: A brief overview

  • Review Article
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The importance of oxygen non-stoichiometry induced expansion, known as chemical expansion, for the mechanical properties of solid oxide fuel cells (SOFCs) is discussed. The methods used to measure chemical expansion and the defects responsible for its existence are introduced. Recent work demonstrating the origin of chemical expansion in fluorite structured oxides for SOFCs is presented. Models used to predict stress induced by chemical expansion in SOFCs, highlighting the necessity of considering electro-chemo-mechanical coupling relationships, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Maru, H., Singhal, S.C., Stone, C., et al.: 1-10kW stationary combined heat and power systems status and technical potential. National Renewable Energy Laboratory Report, NREL/BK-6A10-48265 (2010)

    Google Scholar 

  2. Williams, M.C., ed.: Fuel Cell Handbook. EG&G Technical Services, National Energy Technology Laboratory, U.S. Department of Energy (2004)

    Google Scholar 

  3. www.fuelcelltoday.com: Using fuel cells in residential heat and power. Fuel Cell Today, May 28 (2012)

  4. www.fuelcelltoday.com: Fuel cell energy announces fuel cell manufacturing agreement with POSCO energy. Fuel Cell Today, Nov. 5 (2012)

  5. www.fuelcelltoday.com: European field trials for residential fuel cell heat and power launched. Fuel Cell Today, Oct. 1 (2012)

  6. Adler, S.B., Chen, X.Y., Wilson, J.R.: Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. Journal of Catalysis 245, 91–109 (2007)

    Article  Google Scholar 

  7. Duncan, K.L., Wang, Y., Bishop, S.R., et al.: Role of point defects in the physical properties of fluorite oxides. Journal of the American Ceramic Society 89, 3162–3166 (2006)

    Article  Google Scholar 

  8. Tuller, H.L., Bishop, S.R.: Point defects in oxides: Tailoring materials through defect engineering. Annual Review of Materials Research 41, 369–398 (2011)

    Article  Google Scholar 

  9. Mogensen, M., Sammes, N.M., Tompsett, G.A.: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63–94 (2000)

    Article  Google Scholar 

  10. Adler, S.B.: Chemical expansivity of electrochemical ceramics. Journal of the American Ceramic Society 84, 2117–2119 (2001)

    Article  Google Scholar 

  11. Sato, K., Omura, H., Hashida, T., et al.: Tracking the onset of damage mechanism in ceria-based solid oxide fuel cells under simulated operating conditions. Journal of Testing and Evaluation 34, 246–250 (2006)

    Google Scholar 

  12. Bishop, S.R., Tuller, H.L.: Development of a predictive thermo-chemical expansion and stress model in (Pr,Ce)O2-δ. ECS Transactions 41, 153–159 (2012)

    Article  Google Scholar 

  13. Jin, Z.: Chemically induced cracking in a nonstoichiometric oxide. Journal of Applied Physics 102, 083533 (2007)

    Article  Google Scholar 

  14. Atkinson, A.: Chemically-induced stresses in gadoliniumdoped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95, 249–258 (1997)

    Article  Google Scholar 

  15. Swaminathan, N., Qu, J.: Evaluation of thermomechanical properties of non-stoichiometric gadolinium doped ceria using atomistic simulations. Modelling and Simulation in Materials Science and Engineering 17, 045006 (2009)

    Article  Google Scholar 

  16. Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids: Part I. Theory. Philosophical Magazine 87, 1705–1721 (2007)

    Article  Google Scholar 

  17. Krishnamurthy, R., Sheldon, B.W.: Stresses due to oxygen potential gradients in non-stoichiometric oxides. Acta Materialia 52, 1807–1822 (2007)

    Article  Google Scholar 

  18. Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids: Part II. Examples. Philosophical Magazine 87, 1723–1742 (2007)

    Article  Google Scholar 

  19. Wang, Y., Duncan, K., Wachsman, E.D., et al.: The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ionics 178, 53–58 (2007)

    Article  Google Scholar 

  20. Duncan, K.L., Wang, Y., Bishop, S.R., et al.: The role of point defects in the physical properties of nonstoichiometric ceria: Journal of Applied Physics 101, 044906 (2007)

    Article  Google Scholar 

  21. Amezawa, K., Kushi, T., Sato, K., et al.: Elastic moduli of Ce0.9Gd0.1O2-δ at high temperatures under controlled atmospheres. Solid State Ionics 198, 32–38 (2011)

    Article  Google Scholar 

  22. Kimura, Y., Kushi, T., Hashimoto, S., et al.: Influences of temperature and oxygen partial pressure on mechanical properties of La0.6Sr0.4Co1-y Fe y O3-δ. Journal of the American Ceramic Society 95, 2608–2613 (2012)

    Article  Google Scholar 

  23. Wachtel, E., Lubomirsky, I.: The elastic modulus of pure and doped ceria. Scripta Materialia 65, 112–117 (2011)

    Article  Google Scholar 

  24. Kröger, F. A., Vink, H. J.: Relations between the concentrations of imperfections in crystalline solids. Solid State Physics-Advances in Research and Applications 3, 307–435 (1956)

    Google Scholar 

  25. Tuller, H.L., Bishop, S.R.: Tailoring material properties through defect engineering. Chemistry Letters 39, 1226–1231 (2010)

    Article  Google Scholar 

  26. Barsoum, M.W.: Fundamentals of Ceramics. Insittute of Physics, Bristol (1997)

    Google Scholar 

  27. Otake, T., Yugami, H., Yashiro, K., et al.: Nonstoichiometry of Ce1-x Y x O2-0.5x. Solid State Ionics 161, 181–186 (2003)

    Article  Google Scholar 

  28. Bishop, S.R., Duncan, K.L., Wachsman, E.D.: Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Materialia 57, 3596–3605 (2009)

    Article  Google Scholar 

  29. Bishop, S.R., Duncan, K.L., Wachsman, E.D.: Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochimica Acta 54, 1436–1443 (2009)

    Article  Google Scholar 

  30. Yashiro, K., Onuma, S., Kaimai, A., et al.: Mass transport properties of Ce0.9Gd0.1O2-δ at the surface and in the bulk. Solid State Ionics 152, 469–476 (2002)

    Article  Google Scholar 

  31. Wang, S., Inaba, H., Tagawa, H., et al.: Nonstoichiometry of Ce0.9Gd0.1O1.95−x . Solid State Ionics 107, 73–79 (1998)

    Article  Google Scholar 

  32. Patrakeev, M.V., Leonidov, I.A., Kozhevnikov, V.L.: Applications of coulometric titration for studies of oxygen nonstoichiometry in oxides. Journal of Solid State Electrochemistry 15, 931–954 (2011)

    Article  Google Scholar 

  33. Tsuchiya, M., Lai, B., Ramanathan, S.: Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology 6, 282–286 (2011)

    Article  Google Scholar 

  34. Evans, A., Bieberle-Huetter, A., Rupp, J.L.M., et al.: Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources 194, 119–129 (2009)

    Article  Google Scholar 

  35. Tuller, H.L., Litzelman, S.J., Jung, W.: Micro-ionics: next generation power sources. Physical Chemistry Chemical Physics 11, 3023–3034 (2009)

    Article  Google Scholar 

  36. Chen, D., Bishop, S.R., Tuller, H.L.: Non-stoichiometry in oxide thin films: a chemical capacitance study of the praseodymium-cerium oxide system. Advanced Functional Materials 23, 2168–2174 (2013)

    Article  Google Scholar 

  37. Chueh, W. C., Haile, S. M.: Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Physical Chemistry Chemical Physics 11, 8144–8148 (2009)

    Article  Google Scholar 

  38. Bishop, S.R., Kim, J. J., Thompson, N., et al.: Probing redox kinetics in pr doped ceria mixed ionic electronic conducting thin films by in situ optical absorption measurements. ECS Transactions 45, 491–495 (2012)

    Article  Google Scholar 

  39. Hayashi, H., Kanoh, M., Quan, C., et al.: Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics 132, 227–233 (2000)

    Article  Google Scholar 

  40. Bishop, S.R., Tuller, H.L., Kuru, Y., et al.: Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2-δ: correlation with defect equilibrium model. Journal of the European Ceramic Society 31, 2351–2356 (2011)

    Article  Google Scholar 

  41. Marrocchelli, D., Bishop, S.R., Tuller, H.L., et al.: Understanding chemical expansion in non-stoichiometric oxides: ceria and zirconia case studies. Advanced Functional Materials 22, 1958–1965 (2012)

    Article  Google Scholar 

  42. Hong, S.J., Virkar, A. V.: Lattice-parameters and densities of rare-earth-oxide doped ceria electrolytes. Journal of the American Ceramic Society 78, 433–439 (1995)

    Article  Google Scholar 

  43. Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32, 751–767 (1976)

    Article  Google Scholar 

  44. Bishop, S.R., Marrocchelli, D., Fang, W., et al.:, Reducing the chemical expansion coefficient in ceria by addition of zirconia. Energy and Environmental Science 6, 1142–1146 (2013)

    Article  Google Scholar 

  45. Grande, T., Tolchard, J.R., Selbach, S.M.: Anisotropic thermal and chemical expansion in sr-substituted LaMnO3+δ: Implications for chemical strain relaxation. Chemistry of Materials 24, 338–345 (2012)

    Article  Google Scholar 

  46. Marrocchelli, D., Bishop, S.R., Tuller, H.L., et al.: Charge localization increases chemical expansion in cerium-based oxides. Physical Chemistry Chemical Physics 14, 12070–12074 (2012)

    Article  Google Scholar 

  47. Baskar, D., Adler, S.B.: High temperature magnetic properties of Sr-doped lanthanum cobalt oxide (La1-x Sr x CoO3-δ). Chemistry of Materials 20, 2624–2628 (2008)

    Article  Google Scholar 

  48. Zuev, A.Y., Sereda, V.V., Tsvetkov, D.S.: Defect structure and defect-induced expansion of MIEC oxides: Doped lanthanum cobaltites. Journal of the Electrochemical Society 159, F594–F599 (2012)

    Article  Google Scholar 

  49. Atkinson, A., Ramos, T.M.G.M.: Chemically-induced stresses in ceramic oxygen ion-conductingmembranes. Solid State Ionics 129, 259–269 (2000)

    Article  Google Scholar 

  50. Armstrong, T.R., Stevenson, J.W., Pederson, L.R., et al.: Dimensional instability of doped lanthanum chromite. Journal of the Electrochemical Society 143, 2919–2925 (1996)

    Article  Google Scholar 

  51. Larsen, P.H., Hendriksen, P.V., Mogensen, M.: Dimensional stability and defect chemistry of doped lanthanum chromites. Journal of Thermal Analysis 49, 1263–1275 (1997)

    Article  Google Scholar 

  52. Hashimoto, S., Fukuda, Y., Kuhn, M., et al.: Thermal and chemical lattice expansibility of La0.6Sr0.4Co1-y Fe y O3-δ(y = 0.2, 0.4, 0.6 and 0.8). Solid State Ionics 186, 37–43 (2011)

    Article  Google Scholar 

  53. Manthiram, A., Kim, J., Kim, Y., et al.: Crystal chemistry and properties of mixed ionic-electronic conductors. Journal of Electroceramics 27, 93–107 (2011)

    Article  Google Scholar 

  54. Sase, M., Yashiro, K., Sato, K., et al.: Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics. Solid State Ionics 178, 1843–1852 (2008)

    Article  Google Scholar 

  55. Han, J.W., Yildiz, B.: Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3-δ/(La,Sr)2CoO4+δ heterointerface. Energy and Environmental Science 5, 8598–8607 (2012)

    Article  Google Scholar 

  56. Nakamura, T., Yashiro, K., Sato, K., et al.: Thermallyinduced and chemically-induced structural changes in layered perovskite-type oxides La2-x Sr x NiO4+δ (x = 0, 0.2, 0.4). Solid State Ionics 181, 402–411 (2010)

    Article  Google Scholar 

  57. Nakamura, T., Yashiro, K., Sato, K., et al.: Structural analysis of La2-x Sr x NiO4+δ by high temperature X-ray diffraction. Solid State Ionics 181, 292–299 (2010)

    Article  Google Scholar 

  58. Ram, M., Tsur, Y.: Eliminating chemical effects from thermal expansion coefficient measurements. Journal of Electroceramics 22, 120–124 (2009)

    Article  Google Scholar 

  59. Chiang, H.W., Blumenthal, R.N., Fournelle, R.A.: A hightemperature lattice-parameter and dilatometer study of the defect structure of nonstoichiometric cerium dioxide. Solid State Ionics 66, 85–95 (1993)

    Article  Google Scholar 

  60. Hull, S., Norberg, S.T., Ahmed, I., et al.: Oxygen vacancy ordering within anion-deficient ceria. Journal of Solid State Chemistry 182, 2815–2821 (2009)

    Article  Google Scholar 

  61. Riess, I.: Theoretical treatment of the transport-equations for electrons and ions in a mixed conductor. Journal of the Electrochemical Society 128, 2077–2081 (1981)

    Article  Google Scholar 

  62. Terada, K., Kawada, T., Sato, K., et al.: Multiscale simulation of electro-chemo-mechanical coupling behavior of PEN structure under SOFC operation. ECS Transactions 35, 923–933 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, S.R. Chemical expansion of solid oxide fuel cell materials: A brief overview. Acta Mech Sin 29, 312–317 (2013). https://doi.org/10.1007/s10409-013-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0045-y

Keywords

Navigation