Advertisement

Acta Mechanica Sinica

, Volume 29, Issue 4, pp 550–556 | Cite as

Novel implementation of homogenization method to predict effective properties of periodic materials

  • Geng-Dong ChengEmail author
  • Yuan-Wu Cai
  • Liang Xu
Research Paper

Abstract

Representative volume element (RVE) method and asymptotic homogenization (AH) method are two widely used methods in predicting effective properties of periodic materials. This paper develops a novel implementation of the AH method, which has rigorous mathematical foundation of the AH method, and also simplicity as the RVE method. This implementation can be easily realized using commercial software as a black box, and can use all kinds of elements available in commercial software to model unit cells with rather complicated microstructures, so the model may remain a fairly small scale. Several examples were carried out to demonstrate the simplicity and effectiveness of the new implementation.

Keywords

Effective property Periodic material Homogenizatio RVE method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, R.: A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213–222 (1965)CrossRefGoogle Scholar
  2. 2.
    Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids 27, 315–330 (1979)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kanit, T., Forest, S., Galliet, I., et al.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of Solids and Structures 40, 3647–3679 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A 65, 349–354 (1952)CrossRefGoogle Scholar
  5. 5.
    Yan, J., Cheng, G.D., Liu, S.T., et al.: Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. International Journal of Mechanical Sciences 48, 400–413 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Voigt, W.: On the relation between the elasticity constants of isotropic bodies. Ann. Phys. Chem. 274, 573–587 (1889)CrossRefGoogle Scholar
  7. 7.
    Reuss, A.: Determination of the yield point of polycrystals based on the yield condition of sigle crystals. Z. Angew. Math. Mech. 9, 49–58 (1929)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Process in Periodic Media. Kluwer Academic Publ, Dordrecht (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland Publ, Amsterdam (1978)zbMATHGoogle Scholar
  10. 10.
    Sanchez-Palencia, E., Zaoui, A.: Homogenization Techniques for Composite Media. Springer Verlag, Berlin (1987)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71, 197–224 (1988)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fujii, D., Chen, B.C., Kikuchi, N.: Composite material design of two-dimensional structures using the homogenization design method. International Journal for Numerical Methods in Engineering 50, 2031–2051 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Nishiwaki, S., Frecker, M.I., Min, S., et al.: Topology optimization of compliant mechanisms using the homogenization method. International Journal for Numerical Methods in Engineering 42, 535–559 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Qiao, P., Fan, W., Davalos, J.F., et al.: Optimization of transverse shear moduli for composite honeycomb cores. Composite Structures 85, 265–274 (2008)CrossRefGoogle Scholar
  15. 15.
    Sigmund, O., Torquato, S.: Design of smart composite materials using topology optimization. Smart Materials and Structures 8, 365–379 (1999)CrossRefGoogle Scholar
  16. 16.
    Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures 31, 2313–2329 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hassani, B., Hinton, E.: A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Computers and Structures 69, 707–717 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Hassani, B., Hinton, E.: A review of homogenization and topology opimization II-analytical and numerical solution of homogenization equations. Computers and Structures 69, 719–738 (1998)CrossRefGoogle Scholar
  19. 19.
    Hassani, B., Hinton, E.: A review of homogenization and topology optimization III-topology optimization using optimality criteria. Computers and Structures 69, 739–756 (1998)CrossRefGoogle Scholar
  20. 20.
    Muñoz-Rojas, P.A., Carniel, T.A., Silva, E.C.N., et al.: Optimization of a unit periodic cell in lattice block materials aimed at thermo-mechanical applications. In: Heat Transfer in Multi-Phase Materials. Springer Berlin, Heidelberg, 301–345 (2011)Google Scholar
  21. 21.
    Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49, 1747–1769 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations