Skip to main content
Log in

Numerical modeling and simulation of PEM fuel cells: Progress and perspective

  • Review Article
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Water activity or specific electrochemically active area, m2/m3

c :

Molar concentration, mol/m3

c p :

Constant-pressure heat capacity, J /(kg·K)

D :

Mass diffusivity, m2/s

EW :

Equivalent weight of membrane, kg/mol

F :

Faraday constant, 96 487 C/mol

h pc :

Phase-change parameter

i :

Current density, A/m2

j :

Transfer current density, A/m3

J :

Leverett’s function

k :

Thermal conductivity, W/(m·K)

K :

Permeability, m2

p :

Pressure, Pa

R u :

Universal gas constant, 8.314 J/(mol·K)

s :

Liquid saturation or ice fraction

S :

Source term in transport equations

t :

Time, s

T :

Temperature, K

u :

Fluid velocity and superficial velocity in porous medium, m/s

U o :

Open-circuit potential, V

W w :

Water molecular weight, kg/mol

α :

Transfer coefficient

ɛ :

Porosity

Φ :

Phase potential, V

η :

Over potential, V

λ :

Water content

κ :

Proton conductivity, S/m

ρ :

Density, kg/m3

σ :

Electronic conductivity, S/m

θ :

Contact angle

τ :

Viscous stress tensor

eff:

Effective value

ref:

Reference value

sat:

Saturation

v:

Vapor

a:

Anode

c:

Cathode or capillary

e:

Electrolyte

i:

Species

ice:

Ice

l:

Liquid

m:

Mass or membrane

s:

Electron

T:

Temperature

u:

Velocity

vi:

Vapor to ice

vl:

Vapor to liquid

w:

Water

λ :

Water content

References

  1. Gottesfeld, S., Zawodzinski, T. A.: Polymer electrolyte fuel cells. In: Alkire, R., Gerischer, H., Kolb, D. et al. eds. Advances in Electrochemical Science and Engineering, Vol. 5, Wiley VCH, Weinheim, Germany, 195–301 (1997)

    Chapter  Google Scholar 

  2. Perry, M.L., Fuller, T.F.: A historical perspective of fuel cell technology in the 20th century. J. Electrochem. Soc. 149, S59–S67 (2002)

    Article  Google Scholar 

  3. Wang, C.Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2002)

    Article  Google Scholar 

  4. Bernardi, D.M., Verbrugge, M.W.: Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AICHE J. 37, 1151–1163 (1991)

    Article  Google Scholar 

  5. Bernardi, D.M., Verbrugge, M.W.: A mathematical model of the solid-polymer-electrolyte fuel cell. J. Electrochem. Soc. 139, 2477–2491 (1992)

    Article  Google Scholar 

  6. Springer, T.E., Zawodzinski, T.A., Gottesfeld, S.: Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334–2342 (1991)

    Article  Google Scholar 

  7. Fuller, T.F., Newman, J.: Water and thermal management in solid-polymer-electrolyte fuel cells. J. Electrochem. Soc. 140, 1218–1225 (1993)

    Article  Google Scholar 

  8. Maggio, G., Recupero, V., Mantegazza, C.: Modeling of temperature distribution in a solid polymer electrolyte fuel cell stack. J. Power Sources 62, 167–174 (1996)

    Article  Google Scholar 

  9. Motupally, S., Becker, A.J., Weidner, J.W.: Diffusion of water in nafion 115 membranes. J. Electrochem. Soc. 147, 3171–3177 (2000)

    Article  Google Scholar 

  10. Janssen, G.J.M.: A phenomenological model of water transport in a proton exchange membrane fuel cell. J. Electrochem. Soc. 148, A1313–A1323 (2001)

    Article  Google Scholar 

  11. Costamagna, P.: Transport phenomena in polymeric membrane fuel cells. Chem. Eng. Sci. 56, 323–332 (2001)

    Article  Google Scholar 

  12. Rowe, A., Li, X.: Mathematical modeling of PEMFCs. J. Power Sources 102, 82–96 (2001)

    Article  Google Scholar 

  13. Nguyen, T.V., White, R.E.: A water and heat management model for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 140, 2178–2186

  14. Yi, J.S., Nguyen, T.V.: An along-the-channel model for proton exchange membrane fuel cells. J. Electrochem. Soc. 145, 1149–1159 (1998)

    Article  Google Scholar 

  15. Weber, A.Z., Newman, J.: Transport in polymer electrolyte membranes I. Physical model. J. Electrochem. Soc. 150, A1008–A1015 (2003)

    Article  Google Scholar 

  16. Weber, A.Z., Newman, J.: Transport in polymer electrolyte membranes II. Mathematical model. J. Electrochem. Soc. 151, A311–A325 (2004)

    Article  Google Scholar 

  17. Weber, A.Z., Newman, J.: Transport in polymer electrolyte membranes III. Model validation in a simple fuel-cell model. J. Electrochem. Soc. 151, A326–A339 (2004)

    Article  Google Scholar 

  18. Hum, B., Li, X.: Two-dimensional analysis of PEM fuel cells. J. Appl. Electrochem. 34, 205–215 (2004)

    Article  Google Scholar 

  19. Gurau, V., Liu, H., Kakac, S.: Two-dimensional model for proton exchange membrane fuel cells. AICHE J. 44, 2410–2422 (1998)

    Article  Google Scholar 

  20. Um, S., Wang, C.Y., Chen, K.S.: Computational fluid dynamics modeling of proton exchange membrane fuel cells. J. Electrochem. Soc. 147, 4485–4493 (2000)

    Article  Google Scholar 

  21. Shimpalee, S., Dutta, S.: Numerical prediction of temperature distribution in PEM fuel cells. Numer. Heat Transfer A-Appl. 38, 111–128 (2000)

    Article  Google Scholar 

  22. Dutta, S., Shimpalee, S., Van Zee, J.W.: Three-dimensional numerical simulation of straight channel PEM fuel cells. J. Appl. Electrochem. 30, 135–146 (2000)

    Article  Google Scholar 

  23. Dutta, S., Shimpalee, S., Van Zee, J.W.: Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. Int. J. Heat Mass Transfer 44, 2029–2042 (2001)

    Article  MATH  Google Scholar 

  24. Berning, T., Lu, D.M., Djilali, N.: Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources 106, 284–294 (2002)

    Article  Google Scholar 

  25. Mazumder, S., Cole, J.V.: Rigorous 3-D mathematical modeling of PEM fuel cells I. Model predictions without liquid water transport. J. Electrochem. Soc. 150, A1503–A1509 (2003)

    Article  Google Scholar 

  26. Um, S., Wang, C.Y.: Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. J. Power Sources 125, 40–51 (2004)

    Article  Google Scholar 

  27. Meng, H., Wang, C.Y.: Electron transport in PEFCs. J. Electrochem. Soc. 151, A358–A367 (2004)

    Article  MathSciNet  Google Scholar 

  28. Meng, H., Wang, C.Y.: Large-scale simulation of polymer electrolyte fuel cells by parallel computing. Chem. Eng. Sci. 59, 3331–3343 (2004)

    Article  Google Scholar 

  29. Shimpalee, S., Greenway, S., Spuckler, D., et al.: Predicting water and current distributions in a commercial-size PEMFC. J. Power Sources 135, 79–87 (2004)

    Article  Google Scholar 

  30. Liu, H., Zhou, T., Cheng, P.: Transport phenomena analysis in proton exchange membrane fuel cells. J. Heat Transfer 127, 1363–1379 (2005)

    Article  Google Scholar 

  31. Meng, H., Wang, C.Y.: Multidimensional modeling of polymer electrolyte fuel cells under a current density boundary condition. Fuel Cells 5, 455–462 (2005)

    Article  Google Scholar 

  32. Ju, H., Meng, H., Wang, C.Y.: A single-phase non-isothermal model for PEM fuel cells. Int. J. Heat Mass Transfer 48, 1303–1315 (2005)

    Article  MATH  Google Scholar 

  33. Wang Y., Wang, C.Y.: Modeling polymer electrolyte fuel cells with large density and velocity changes. J. Electrochem. Soc. 152, A445–A453 (2005)

    Article  Google Scholar 

  34. Sivertsen, B.R., Djilali, N.: CFD-based modeling of proton exchange membrane fuel cells. J. Power Sources 141, 65–78 (2005)

    Article  Google Scholar 

  35. Wang, Y., Wang C.Y.: Ultra large-scale simulation of polymer electrolyte fuel cells. J. Power Sources 153, 130–135 (2006)

    Article  Google Scholar 

  36. Meng, H.: A three-dimensional PEM fuel cell model with consistent treatment of water transport in MEA. J. Power Sources 162, 426–435 (2006)

    Article  Google Scholar 

  37. Meng, H.: A three-dimensional mixed-domain PEM fuel cell model with fully-coupled transport phenomena. J. Power Sources 164, 688–696 (2007)

    Article  Google Scholar 

  38. Wang, X.D., Zhang, X.X., Yan, W.M., et al.: Determination of the optimal active area for proton exchange membrane fuel cells with parallel, interdigitated or serpentine designs. Int. J. Hydrogen Energy 34, 3823–3832 (2009)

    Article  Google Scholar 

  39. Ju, H., Wang, C.Y.: Experimental validation of a PEM fuel cell model by current distribution data. J. Electrochem. Soc. 151, A1954–A1960 (2004)

    Article  Google Scholar 

  40. Ju, H., Wang, C.Y., Cleghorn, S., et al.: Nonisothermal modeling of polymer electrolyte fuel cells I. Experimental validation. J. Electrochem. Soc. 152, A1645–A1653 (2005)

    Article  Google Scholar 

  41. Tüber, K., Pcza, D., Hebling, C.: Visualization of water buildup in the cathode of a transparent PEM fuel cell. J. Power Sources 124, 403–414 (2003)

    Article  Google Scholar 

  42. Yang, X.G., Zhang, F.Y., Lubawy, A.L., et al.: Visualization of liquid water transport in a polymer electrolyte fuel cell. Electrochem. Solid-State Lett. 7, A408–A411 (2004)

    Article  Google Scholar 

  43. Tsushima, S., Teranishi, K., Hirai, S.: Magnetic resonance imaging of the water distribution within a polymer electrolyte membrane in fuel cells. Electrochem. Solid-State Lett. 7, A269–A272 (2004)

    Article  Google Scholar 

  44. Turhan, A., Heller, K., Brenizer J.S., et al.: Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging. J. Power Sources 160, 1195–1203 (2006)

    Article  Google Scholar 

  45. Sinha, P.K., Halleck, P., Wang C.Y.: Quantification of liquid water saturation in a PEM fuel cell diffusion medium using xray microtomograph. Electrochem. Solid-State Lett. 9, A344–A348 (2006)

    Article  Google Scholar 

  46. Spernjak, D., Prasad, A.K., Advani, S.G.: Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell. J. Power Sources 170, 334–344 (2007)

    Article  Google Scholar 

  47. Manke, I., Hartinig, C., Grunerbel, M., et al.: Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiograph. Appl. Phys. Lett. 90, 174105-3 (2007)

    Google Scholar 

  48. Bazylak, A., Sinton, D., Liu, Z.S., et al.: Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. J. Power Sources 163, 784–792 (2007)

    Article  Google Scholar 

  49. Hussey, D.S., Jacobson, D.L., Arif, M., et al.: Neutron imaging of the through-plane water distribution of an operating PEM fuel cell. J. Power Sources 172, 225–228 (2007)

    Article  Google Scholar 

  50. Hickner, M.A., Siegel, N.P., Chen, K.S., et al.: In situ high-resolution neutron radiography of cross-sectional liquid water profiles in proton exchange membrane fuel cells. J. Electrochem. Soc. 155, B427–B434 (2008)

    Article  Google Scholar 

  51. Bazylak, A.: Liquid water visualization in PEM fuel cells: a review. Int. J. Hydrogen Energy 34, 3845–3857 (2009)

    Article  Google Scholar 

  52. Turhan, A., Kim, S., Hatzell, M., et al.: Impact of channel wall hydrophobicity on through-plane water distribution and flooding behavior in a polymer electrolyte fuel cell. Electrochim. Acta 55, 2734–2745 (2010)

    Article  Google Scholar 

  53. He, W., Yi, J.S., Nguyen, T.V.: Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields. AICHE J. 46, 2053–2064 (2000)

    Article  Google Scholar 

  54. Wang, Z.H., Wang, C.Y., Chen K.S.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001)

    Article  Google Scholar 

  55. You, L., Liu, H.: A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transfer 45, 2277–2287 (2002)

    Article  MATH  Google Scholar 

  56. Berning, T., Djilali, N.: A 3D multiphase multicomponent model of the cathode and anode of a PEM fuel cell. J. Electrochem. Soc. 150, A1589–A1598 (2003)

    Article  Google Scholar 

  57. Siegel, N.P., Ellis, M.W., Nelson, D.J., et al.: A two-dimensional computational model of a PEMFC with liquid water transport. J. Power Sources 128, 173–184 (2004)

    Article  Google Scholar 

  58. Meng, H., Wang, C.Y.: Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. J. Electrochem. Soc. 152, A1733–A1741 (2005)

    Article  Google Scholar 

  59. Lin, G., Nguyen, T.V.: A two-dimensional two-phase model of a PEM fuel cell. J. Electrochem. Soc. 153, A372–A382 (2006)

    Article  Google Scholar 

  60. Tao, W.Q., Min, C.H., Liu, X.L., et al.: Parameter sensitivity examination and discussion of PEM fuel cell simulation and model validation part I. Current status of modeling research and model development. J. Power Sources 160, 359–373 (2006)

    Article  Google Scholar 

  61. Wang, Y., Wang, C.Y.: A nonisothermal two-phase model for polymer electrolyte fuel cells. J. Electrochem. Soc. 153, A1193–A1200 (2006)

    Article  Google Scholar 

  62. Hu, G., Fan, J.: A three-dimensional, multicomponent, twophase model for a proton exchange membrane fuel cell with straight channels. Energy Fuel 20, 738–747 (2006)

    Article  Google Scholar 

  63. Ju, H., Luo, G., Wang, C.Y.: Probing liquid water saturation in diffusion media of polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B218–B228 (2007)

    Article  Google Scholar 

  64. Luo, G., Ju, H., Wang, C.Y.: Prediction of dry-wet-dry transition in polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B316–B321 (2007)

    Article  Google Scholar 

  65. Meng, H.: A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. J. Power Sources 168, 218–228 (2007)

    Article  Google Scholar 

  66. Wang, Y.: Modeling of two-phase transport in the diffusionmedia of polymer electrolyte fuel cells. J. Power Sources 185, 261–271 (2008)

    Article  Google Scholar 

  67. Ju, H.: Analyzing the effects of immobile liquid saturation and spatial wettability variation on liquid water transport in diffusion media of polymer electrolyte fuel cells (PEFCs). J. Power Sources 185, 55–62 (2008)

    Article  Google Scholar 

  68. Wu, H., Li, X., Berg, P.: On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochim. Acta 54, 6913–6927 (2009)

    Article  Google Scholar 

  69. Meng, H.: Numerical studies of liquid water behaviors in PEM fuel cell cathode considering transport across different porous layers. Int. J. Hydrogen Energy 35, 5569–5579 (2010)

    Article  Google Scholar 

  70. Wang, X.D., Xu, J.L., Lee, D.J.: Parameter sensitivity examination for a complete three-dimensional, two-phase, nonisothermal model of polymer electrolyte membrane Fuel Cell. Int. J. Hydrogen Energy 37, 15766–15777 (2012)

    Article  Google Scholar 

  71. Zheng, L.J., Srouji, A.K., Turhan, A., et al.: Computational exploration of ultra-high current PEFC operation with porous flow field. J. Electrochem. Soc. 159, F267–F277 (2012)

    Article  Google Scholar 

  72. Meng, H., Han, B., Ruan, B.: Numerical modeling of liquid water transport inside and across membrane in PEM fuel cells, Asia-Pac. J. Chem. Eng. 8, 104–114 (2013)

    Google Scholar 

  73. Nam, J.H., Kaviany, M.: Effective diffusivity and watersaturation distribution in single-and two-layer PEMFC diffusion medium. Int. J. Heat and Mass Transfer 46, 4595–4611 (2003)

    Article  Google Scholar 

  74. Pasaogullari, U., Wang, C.Y.: Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim. Acta 49, 4359–4369 (2004)

    Article  Google Scholar 

  75. Weber, A.Z., Hickner, M.A.: Modeling and high-resolution-imaging studies of water content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly. Electrochim. Acta 53, 7668–7674 (2008)

    Article  Google Scholar 

  76. Gurau, V., Zawodzinski, T.A., Mann, J.A.: Two-phase transport in PEM fuel cell cathodes. J. Fuel Cell Sci. Tech. 5, 021009 (2008)

    Article  Google Scholar 

  77. Meng, H.: Multi-dimensional liquid water transport in the cathode of a PEM fuel cell with consideration of the micro-porous layer (MPL). Int. J. Hydrogen Energy 34, 5488–5497 (2009)

    Article  Google Scholar 

  78. Le, A.D., Zhou, B.: A general model of proton exchange membrane fuel cell. J. Power Sources 182, 197–222 (2008)

    Article  Google Scholar 

  79. Le, A.D., Zhou, B.: A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design. J. Power Sources 193, 665–683 (2009)

    Article  Google Scholar 

  80. Le, A.D., Zhou, B., Shiu, H.-R., et al.: Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels. J. Power Sources 195, 7302–7315 (2010)

    Article  Google Scholar 

  81. Kang, S., Zhou, B., Cheng, C.-H., et al.: Liquid water flooding in a proton exchange membrane fuel cell cathode with an interdigitated design. Int. J. Energy Res. 35, 1292–1311 (2011)

    Article  Google Scholar 

  82. Wang, Y., Wang, C.Y.: Transient analysis of polymer electrolyte fuel cells. Electrochim. Acta 50, 1307–1315 (2005)

    Article  Google Scholar 

  83. Wang, Y., Wang, C.Y.: Dynamics of polymer electrolyte fuel cells undergoing load changes. Electrochim. Acta 51, 3924–3933 (2006)

    Article  Google Scholar 

  84. Shimpalee, S., Lee, W.K., Van Zee, J.W., et al.: Predicting the transient response of a serpentine flow-field PEMFC I. Excess to normal fuel and air. J. Power Sources 156, 355–368 (2006)

    Article  Google Scholar 

  85. Shimpalee, S., Lee, W.K., Van Zee, J.W., et al.: Predicting the transient response of a serpentine flow-field PEMFC II. Normal to minimal fuel and air. J. Power Sources 156, 369–374 (2006)

    Article  Google Scholar 

  86. Wu, H., Berg, P., Li, X.: Non-isothermal transient modeling of water transport in PEM fuel cells. J. Power Sources 165, 232–243 (2007)

    Article  Google Scholar 

  87. Wu, H., Li, X., Berg, P.: Numerical analysis of dynamic processes in fully humidified PEM fuel cells. Int. J. Hydrogen Energy 32, 2022–2031 (2007)

    Article  Google Scholar 

  88. Natarajan, D., Nguyen, T.V.: A two-dimensional two-phase multicomponent transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors. J. Electrochem. Soc. 148, A1324–A1335 (2001)

    Article  Google Scholar 

  89. Song, D., Wang, Q., Liu, Z.S., et al.: Transient analysis for the cathode gas diffusion layer of PEM fuel cells. J. Power Sources 159, 928–942 (2006)

    Article  Google Scholar 

  90. Meng, H.: Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model. J. Power Sources 171, 738–746 (2007)

    Article  Google Scholar 

  91. Shah, A.A., Kim, G.S., Sui, P.C., et al.: Transient nonisothermal model of a polymer electrolyte fuel cell. J. Power Sources 163, 793–806 (2007)

    Article  Google Scholar 

  92. Wang, Y., Wang, C.Y.: Two-phase transients of polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B636–B643 (2007)

    Article  Google Scholar 

  93. Sun, H., Zhang, G.S., Guo, L.J., et al.: A study of dynamic characteristics of PEM fuel cells by measuring local currents. Int. J. Hydrogen Energy 34, 5529–5536 (2009)

    Article  Google Scholar 

  94. Mishra, B., Wu, J.X.: Exploring transient behavior at startup of a polymer electrolyte membrane fuel cell. J. Fuel Cell Sci. Tech. 7, 021004 (2010)

    Article  Google Scholar 

  95. McDonald, R.C., Mittelsteadt, C.K., Thompson E.L.: Effects of deep temperature cycling on nafion 112 membranes and membrane electrode assemblies. Fuel Cells 4, 208–213 (2004)

    Article  Google Scholar 

  96. Cho, E., Ko, J.J., Ha, H.Y., et al.: Characteristics of the PEMFC repetitively brought to temperatures below 0°C. J. Electrochem. Soc. 150, A1667–A1670 (2003)

    Article  Google Scholar 

  97. Cho, E., Ko, J.J., Ha, H.Y., et al.: Effects of water removal on the performance degradation of PEMFCs repetitively brought to <0°C. J. Electrochem. Soc. 151, A661–A665 (2004)

    Article  Google Scholar 

  98. Hou, J., Yu, H., Zhang, S., et al.: Analysis of PEMFC freeze degradation at −20°C after gas purging. J. Power Sources 162, 513–520 (2006)

    Article  Google Scholar 

  99. Yan, Q., Toghiani, H., Lee, Y.W., et al.: Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. J. Power Sources 160, 1242–1250 (2006)

    Article  Google Scholar 

  100. Oszcipok, M., Riemann, D., Kronenwett, U., et al.: Statistic analysis of operational influences on the cold start behavior of PEM fuel cells. J. Power Sources 145, 407–415 (2005)

    Article  Google Scholar 

  101. Oszcipok, M., Hakenjos, A., Riemann, D., et al.: Start up and freezing processes in PEM fuel cells. Fuel Cells 7, 135–141 (2007)

    Article  Google Scholar 

  102. Tajiri, K., Tabuchi, Y., Wang, C.Y.: Isothermal cold start of polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B147–B152 (2007)

    Article  Google Scholar 

  103. Tajiri, K., Tabuchi, Y., Kagami, F., et al.: Effects of operating and design parameters on PEFC cold start. J. Power Sources 165, 279–286 (2007)

    Article  Google Scholar 

  104. Thompson, E.L., Capehart, T.W., Fuller, T.J., et al.: Investigation of low-temperature proton transport in Nafion using direct current conductivity and differential scanning calorimetry. J. Electrochem. Soc. 153, A2351–A2362 (2006)

    Article  Google Scholar 

  105. Thompson, E.L., Jorne, J., Gasteiger, H.A.: Oxygen reduction reaction kinetics in subfreezing PEM fuel cells. J. Electrochem. Soc. 154, B783–B792 (2007)

    Article  Google Scholar 

  106. Thompson, E.L., Jorne, J., Gu, W., et al.: PEM fuel cell operation at −20°C. I. Electrode and membrane water (charge) storage. J. Electrochem. Soc. 155, B625–B634 (2008)

    Article  Google Scholar 

  107. Ge, S., Wang, C.Y.: In situ imaging of liquid water and ice formation in an operating PEFC during cold start. Electrochem. Solid-State Lett. 9, A499–A503 (2006)

    Article  Google Scholar 

  108. Ge, S., Wang, C.Y.: Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell. Electrochim. Acta 52, 4825–4835 (2007)

    Article  Google Scholar 

  109. Ishikawa, Y., Morita, T., Nakata, K., et al.: Behaviors of water below the freezing point in PEFCs. J. Power Sources 163, 708–712 (2007)

    Article  Google Scholar 

  110. Ishikawa, Y., Hamada, H., Uehara, M., et al.: Super-cooled water behavior inside polymer electrolyte fuel cell cross-section below freezing temperature. J. Power Sources 179, 547–552 (2008)

    Article  Google Scholar 

  111. Sundaresan, M., Moore, R.M.: Polymer electrolyte fuel cell stack thermal model to evaluate sub-freezing startup. J. Power Sources 145, 534–545 (2005)

    Article  Google Scholar 

  112. Ahluwalia, R.K., Wang X.: Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures. J. Power Sources 162, 502–512 (2006)

    Article  Google Scholar 

  113. Mao, L., Wang, C.Y.: Analysis of cold start in polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B139–B146 (2007)

    Article  Google Scholar 

  114. Wang, Y.: Analysis of the key parameters in the cold start of polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B1041–B1048 (2007)

    Article  Google Scholar 

  115. Khandelwal, M., Lee, S., Mench, M.M.: One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack. J. Power Sources 172, 816–830 (2007)

    Article  Google Scholar 

  116. Mao, L., Wang C.Y.: A multiphase model for cold start of polymer electrolyte fuel cells. J. Electrochem. Soc. 154, B341–B351 (2007)

    Article  Google Scholar 

  117. Jiang, F., Fang, W., Wang, C.Y.: Non-isothermal cold start of polymer electrolyte fuel cells. Electrochim. Acta 53, 610–621 (2007)

    Article  Google Scholar 

  118. Meng, H.: A PEM fuel cell model for cold-start simulations. J. Power Sources 178, 141–150 (2008)

    Article  Google Scholar 

  119. Meng, H.: Numerical studies of cold-start phenomenon in PEM fuel cells. Electrochim. Acta 53, 6521–6529 (2008)

    Article  Google Scholar 

  120. Meng, H.: Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures. Int. J. Hydrogen Energy 33, 5738–5747 (2008)

    Article  Google Scholar 

  121. Jiao, K., Li, X.: Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells. Electrochim. Acta 54, 6876–6891 (2009)

    Article  Google Scholar 

  122. Hiramitsu, Y., Mitsuzawa, N., Okada, K., et al.: Effects of ionomer content and oxygen permeation of the catalyst layer on proton exchange membrane fuel cell cold start-up. J. Power Sources 195, 1038–1045 (2010)

    Article  Google Scholar 

  123. Meng, H., Ruan, B.: Numerical studies of cold-start phenomena in PEM fuel cells: A review. Int. J. Energy Res. 35, 2–14 (2011)

    Article  Google Scholar 

  124. Jiao, K., Alaefour, I.E., Karimi, G., et al.: Cold start characteristics of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 11832–11845 (2011)

    Article  Google Scholar 

  125. Ko, J., Ju, H.: Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells. Appl. Energy 94, 364–374 (2012)

    Article  Google Scholar 

  126. Wang, G.Q., Mukherjee, P.P., Wang, C.Y.: Direct numerical simulation (DNS) modeling of PEFC electrodes — Part I. Regular microstructure. Electrochim. Acta 51, 3139–3150 (2006)

    Article  Google Scholar 

  127. Wang, G.Q., Mukherjee, P.P., Wang, C.Y.: Direct numerical simulation (DNS) modeling of PEFC electrodes — Part II. Random microstructure. Electrochim. Acta 51, 3151–3160 (2006)

    Article  Google Scholar 

  128. Wang, Y., Cho, S.C., Thiedmann, R., et al.: Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells. Int. J. Heat Mass Transfer 53, 1128–1138 (2010)

    Article  MATH  Google Scholar 

  129. Hao, L., Cheng, P.: Lattice Boltzmann simulations of anisotropic permeabilities of carbon paper gas diffusion layers. J. Power Sources 186, 104–114 (2009)

    Article  Google Scholar 

  130. Mukherjee, P.P., Wang, C.Y., Kang, Q.: Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim. Acta 54, 6861–6875 (2009)

    Article  Google Scholar 

  131. Mukherjee, P.P., Kang, Q., Wang, C.Y.: Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells — Progress and perspective. Energy Environ. Sci. 4, 346–369 (2011)

    Article  Google Scholar 

  132. Nam, J.H., Lee, K.J., Hwang, G.S., et al.: Microporous layer for water morphology control in PEMFC. Int. J. Heat Mass Tranfer 52, 2779–2791 (2009)

    Article  Google Scholar 

  133. Ji, Y., Luo, G., Wang, C.Y.: Pore-Level liquid water transport through composite diffusion media of PEMFC. J. Electrochem. Soc. 157, B1753–B1761 (2010)

    Article  Google Scholar 

  134. Wu, R., Zhu, X., Liao, Q., et al.: A pore network study on water distribution in bi-layer gas diffusion media: Effects of inlet boundary condition and micro-porous layer properties. Int. J. Hydrogen Energy 35, 9134–9143 (2010)

    Article  Google Scholar 

  135. Quan, P., Zhou, B., Sobiesiak, A., et al.: Water behaviors in serpentine micro-channel for proton exchange membrane fuel cell cathode. J. Power Sources 152, 131–145 (2005)

    Article  Google Scholar 

  136. Jiao, K., Zhou, B.: Effects of electrode wettabilities on liquid water behaviors in PEM fuel cell cathode. J. Power Sources 175, 106–119 (2008)

    Article  Google Scholar 

  137. Zhu, X., Sui, P.C., Djilali, N.: Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel. J. Power Sources 181, 101–115 (2008)

    Article  Google Scholar 

  138. Chen, L., Luan, H., He, Y.L., et al.: Effects of roughness of gas diffusion layer surface on liquid water transport in micro gas channels of a proton exchange membrane fuel cell. Numer. Heat Transfer A-Appl. 62, 295–318 (2012)

    Article  Google Scholar 

  139. Mondal, B., Jiao, K., Li, X.: Three-dimensional simulation of water droplet movement in PEM fuel cell flow channels with hydrophilic surfaces. Int. J. Energy Res. 35, 1200–1212 (2011)

    Article  Google Scholar 

  140. Hao, L., Cheng, P.: Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J. Power Sources 190, 435–446 (2009)

    Article  Google Scholar 

  141. Han, B., Yu, J., Meng, H.: Lattice Boltzmann simulations of liquid droplets development and interaction in a gas channel of a proton exchange membrane fuel cell. J. Power Sources 202, 175–183 (2012)

    Article  Google Scholar 

  142. Han, B., Meng, H.: Lattice Boltzmann simulation of liquid water transport in turning regions of serpentine gas channels in proton exchange membrane fuel cells. J. Power Sources 217, 268–279 (2012)

    Article  Google Scholar 

  143. Hizir, F.E., Ural, S.O., Kumber, E.C., et al.: Characterization of interfacial morphology in polymer electrolyte fuel cells: microporous layer and catalyst layer surfaces. J. Power Sources 195, 3463–3471 (2010)

    Article  Google Scholar 

  144. Bajpai, H., Khandewal, M., Kumber, E.C., et al.: A computational model for assessing impact of interfacial morphology on polymer electrolyte fuel cell performance. J. Power Sources 195, 4196–4205 (2010)

    Article  Google Scholar 

  145. Yang, X.G., Burke, N., Wang, C.Y., et al.: Simultaneous measurements of species and current distributions in a PEFC under low-humidity operation. J. Electrochem. Soc. 152, A759–A766 (2005)

    Article  Google Scholar 

  146. Wang, Y., Basu, S., Wang, C.Y.: Modeling two-phase flow in PEM fuel cell channels. J. Power Sources 179, 603–617 (2008)

    Article  Google Scholar 

  147. Esposito, A., Pianese, C., Guezennec, Y.G.: Coupled modeling of water transport and air-droplet interaction in the electrode of a proton exchange membrane fuel cell. J. Power Sources 195, 4149–4159 (2010)

    Article  Google Scholar 

  148. Meng, H.: A simplified method for solving anisotropic transport phenomena in PEM fuel cells. J. Power Sources 161, 466–469 (2006)

    Article  Google Scholar 

  149. Yang, W.W., Zhao, T.S., He, Y.L.: Modeling of coupled electron and mass transport in anisotropic proton-exchange membrane fuel cell electrodes. J. Power Sources 185, 765–775 (2008)

    Article  Google Scholar 

  150. Gu, W.B., Wang, C.Y.: Thermal-electrochemical modeling of battery systems. J. Electrochem. Soc. 147, 2910–2919 (2000)

    Article  Google Scholar 

  151. Pasaogullari, U., Mukherjee, P.P., Wang, C.Y.: Anisotropic heat and water transport in a PEFC cathode gas diffusion layer. J. Electrochem. Soc. 154, B823–B834 (2007)

    Article  Google Scholar 

  152. Bapat, C.J., Thynell, S.T.: Effect of anisotropic thermal conductivity of the GDL and current collector rib width on twophase transport in a PEM fuel cell. J. Power Sources 179, 240–251 (2008)

    Article  Google Scholar 

  153. Ju, H.: Investigation of the effects of the anisotropy of gasdiffusion layers on heat and water transport in polymer electrolyte fuel cells. J. Power Sources 191, 259–268 (2009)

    Article  Google Scholar 

  154. He, G.L., Yamazaki, Y., Abudula A.: A three-dimensional analysis of the effect of anisotropic gas diffusion layer (GDL) thermal conductivity on the heat transfer and two-phase behavior in a proton exchange membrane fuel cell (PEMFC). J. Power Sources 195, 1551–1560 (2010)

    Article  Google Scholar 

  155. Gerteisen, D., Heilmann, T., Ziegler, C.: Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell. J. Power Sources 177, 348–354 (2008)

    Article  Google Scholar 

  156. Manahan, M.P., Hatzell, M.C., Kumbur, E.C., et al.: Laser perforated fuel cell diffusion media. Part I: Related changes in performance and water content. J. Power Sources 196, 5573–5582 (2011)

    Article  Google Scholar 

  157. Manahan, M.P., Mench, M.M.: Laser perforated fuel cell diffusion media: engineering interfaces for improved ionic and oxygen transport. J. Electrochem. Soc. 159, F322–F330 (2012)

    Article  Google Scholar 

  158. Han, B., Meng, H.: Numerical studies of interfacial phenomena in liquid water transport in polymer electrolyte membrane fuel cells using the lattice Boltzmann method. Int. J. Hydrogen Energy 38, 5053–5059 (2013)

    Article  Google Scholar 

  159. Guo, Q., Luo, Y., Jiao, K.: Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 38, 1004–1015 (2013)

    Google Scholar 

  160. Luo, Y., Guo, Q., Du Q., et al.: Analysis of cold start processes in proton exchange membrane fuel cell stacks. J. Power Sources 224, 99–114 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Meng.

Additional information

The project was supported by the National Natural Science Foundation of China (10972197).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, GH., Meng, H. Numerical modeling and simulation of PEM fuel cells: Progress and perspective. Acta Mech Sin 29, 318–334 (2013). https://doi.org/10.1007/s10409-013-0037-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0037-y

Keywords

Navigation