Acta Mechanica Sinica

, Volume 29, Issue 4, pp 557–566 | Cite as

A reliability study of springback on the sheet metal forming process under probabilistic variation of prestrain and blank holder force

  • Hatem MradEmail author
  • Mohamed Bouazara
  • Gholamreza Aryanpour
Research Paper


This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are investigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simulation technique in conjunction with the Latin hypercube sampling method was adopted to study the probabilistic springback. Finite element method based on implicit/explicit algorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler algorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reliability functions based on geometry compensations.


Springback Prestrain Multi-state limit functio Constitutive law Monte Carl 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemaire, M.: Fiabilité des Structures, Couplage Méano-fiabiliste Statique. Hermès Science Publishing LTD (2005) (in French)Google Scholar
  2. 2.
    Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer-Verlag New York Inc. New York (1991)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ben Elechi, S., Naceur, H., Batoz, J.L.: Simulation de l’emboutissage par approche inverse améiorée pour l’estimation du retour éastique. Revue Européenne des Éléments Finis. 14, 957–984 (2005) (in French)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gati, W.: Approche pseudo inverse pour simulations rapides du procédé d’emboutissage et de retour élastique des pièces en tóles minces. [Ph.D. Thesis], UTC, France (2002) (in French)Google Scholar
  5. 5.
    Souza, T., Rolfe, B.F.: Characterising material and process variation effects on springback robustness for a semicylindrical sheet metal forming process. Int. J. Mech. Sci. 52, 1756–1766 (2010)CrossRefGoogle Scholar
  6. 6.
    Liu, W., Yang, Y., Xing, Z., et al.: Springback control of sheet metal forming based on the response-surface method and multiobjective genetic algorithm. Mater. Sci. Eng. A 499, 325–328 (2009)CrossRefGoogle Scholar
  7. 7.
    Liu, G., Lin, Z., Xu, W., et al.: Variable blankholder force in ushaped part forming for eliminating springback error. J. Mater. Process. Technol. 120, 259–264 (2002)CrossRefGoogle Scholar
  8. 8.
    Jiang, C., Hana, X., Liu, G.R., et al.: The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J. Mater. Process. Technol. 182, 262–267 (2007)CrossRefGoogle Scholar
  9. 9.
    Verma, R.K., Chung, K., Kuwabara, T.: Effect of pre-strain on anisotropic hardening and springback behavior of an ultra low carbon automotive steel. I.S.I.J. International 51, 482–490 (2011)Google Scholar
  10. 10.
    Makinouchi, A., Nakamachi, E., Onate Wagoner, R.H.: Numerical simulation of 3D sheet forming processes. Verification of simulation with experiment. In: Proceedings of 2nd International Numisheet’93, Isehara Japan (1993)Google Scholar
  11. 11.
    Mohamed, M.I.A., Terence, G.L.: The influence of prestrain on ductility in the superplastic Pb-Sn eutectic alloy. J. Mater. Sci. 18, 3535–3542 (1983)CrossRefGoogle Scholar
  12. 12.
    Enami, K.: The effects of compressive and tensile prestrain on ductile fracture initiation in steels. Eng. Fract. Mech. 72, 1089–1105 (2005)CrossRefGoogle Scholar
  13. 13.
    Tang, B., Zhao, G., Wang, Z.: A mixed hardening rule coupled with Hill48’ yielding function to predict the springback of sheet U-bending. Int. J. Mater. Form. 1, 169–175 (2008)CrossRefGoogle Scholar
  14. 14.
    Geng, L., Wagoner, R.H.: Springback analysis with a modified hardening model. S.A.E. Tech. Pap. Ser. No. 2000-01-0768 (2000)Google Scholar
  15. 15.
    Aryanpour, G., Farzaneh, M.: Analysis of axial strain in onedimensional loading by different models. Acta Mech. Sin. 26, 745–753 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Aryanpour, G., Farzaneh, M., Mrad, H.: Finite element analysis of elastoplastic modeling: Application to one-dimensional loading of as-received and pre-strained materials. Acta Mech. 223, 911–922 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jansson, T., Nilssona, L., Moshfegh, R.: Reliability analysis of a sheet metal forming process using Monte Carlo analysis and metamodels. J. Mater. Process. Technol. 202, 255–268 (2008)CrossRefGoogle Scholar
  18. 18.
    Janssen, H.: Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. J. Reliab. Eng. Syst. Safety. 109, 123–132 (2013)CrossRefGoogle Scholar
  19. 19.
    Meinders, T., Konter, A.W.A., Meijers, S.E., et al.: A sensitivity analysis on the springback behaviour of the unconstrained bending problem. Int. J. Form. Process. 9, 365–402 (2006)CrossRefGoogle Scholar
  20. 20.
    Mrad, H., Rachik, M., Marceau, D.: The probabilistic numerical investigation of the frictional contact problem. In: Proc. of 4th International Conference on Advances in Mechanical Engineering and Mechanics, Boussaa Publishing Co. Sousse, Tunisia (2008)Google Scholar
  21. 21.
    Bjerager, R.: Methods for structural reliability computation, In: Casciati F, ed. Reliability Problems: General Principles and Applications in Mechanics of Solid and Structures. Springer Verlag, New York, 89–136 (1991)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hatem Mrad
    • 1
    Email author
  • Mohamed Bouazara
    • 1
  • Gholamreza Aryanpour
    • 2
  1. 1.Department of Applied SciencesUniversity of Quebec at ChicoutimiQuebecCanada
  2. 2.Laval UniversityQuébecCanada

Personalised recommendations