Advertisement

Acta Mechanica Sinica

, Volume 29, Issue 4, pp 513–525 | Cite as

A computational study of a capsule lateral migration in microchannel flow

  • M. Navidbakhsh
  • M. RezazadehEmail author
Research Paper

Abstract

A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re ≈ 0.01. The capsule is modeled as a liquid drop surrounded by a neo-Hookean elastic membrane. The numerical model combines immersed boundary with lattice Boltzmann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular capsule. The wall effect becomes stronger as the capsule initial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is decreased, thus, the capsule motion is slower than the background flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation.

Keywords

Capsule Lateral migration Lattice Boltzmann Immersed boundary Deformation Initial position 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwak, S., Pozrikidis, C.: Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13, 1234–1244 (2001)CrossRefGoogle Scholar
  2. 2.
    Ramanujan, S., Pozrikidis, C.: Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117–143 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Pozrikidis, C.: Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. FluidMech. 297, 123–152 (1995)zbMATHGoogle Scholar
  4. 4.
    Eggleton, CD., Popel, A.S.: Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10, 1834–1845 (1998)CrossRefGoogle Scholar
  5. 5.
    Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dupin, M.M., Halliday, I., Care, C.M., et al.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707 (2007)CrossRefGoogle Scholar
  7. 7.
    Bagchi, P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 858–1877 (2007)CrossRefGoogle Scholar
  8. 8.
    Sun, C., Migliorini, C., Munn, L.L.: Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85, 208–222 (2003)CrossRefGoogle Scholar
  9. 9.
    Sun, C., Munn, L.L.: Particulate nature of blood determines macroscopic rheology: A 2-D lattice Boltzmann analysis. Biophys. J. 88, 1635–1645 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Johnson, P.C., Popel, A.S.: An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4, 285–295 (2007)CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Johnson, P.C., Popel, A.S.: Red blood cell aggregation and dissociation in shear flows simulated bylattice Boltzmann method. J. Biomech. 41, 47–55 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhang, J., Johnson, P.C., Popel, A.S.: Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77, 265–272 (2009)CrossRefGoogle Scholar
  13. 13.
    Sun, C., Munn, LL.: Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: a lattice Boltzmann analysis. Phys. A 362, 191–196 (2006)CrossRefGoogle Scholar
  14. 14.
    Ma, G., Hua, J., Li, H.: Numerical modeling of the behavior of an elastic capsule in a microchannel flow: The initial motion. Phys. Rev. E 79, 046710 (2009)CrossRefGoogle Scholar
  15. 15.
    Xiong, W., Zhang, J.: Shear stress variation induced by red blood cell motion in microvessel. Ann. Biomed. Eng. 38, 2649–2659 (2010)CrossRefGoogle Scholar
  16. 16.
    Wang, T., Xing, Z.: Characterization of blood flow in capillaries by numerical simulation. Journal of Modern Physics 1, 349–335 (2010)CrossRefGoogle Scholar
  17. 17.
    Doddi, S., Baghchi P.: Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiphase Flow 34, 966–986 (2008)CrossRefGoogle Scholar
  18. 18.
    Pozrikidis, C.: Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Zhu, L.D., He, G.W., Wang, S.Z., et al.: An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application. Comput. Math. Appl. 61, 3506–3518 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part II. Numerical results. J. Fluid Mech. 271, 311–339 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation. J. Fluid Mech. 271, 285–310 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Navidbakhsh, M., Rezazadeh, M.: An immersed boundary lattice Boltzmann model for simulation of malaria-infected red blood cell in microchannel, Scientia Iranica 19, 1329–1336 (2012)CrossRefGoogle Scholar
  24. 24.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Mechanics and Beyond, Clarendon Press, Oxford, UK (2001)Google Scholar
  25. 25.
    Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)CrossRefGoogle Scholar
  26. 26.
    Bagchi, P.C. Johnson, P.S., Popel, A.: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127, 1070–1080 (2005)CrossRefGoogle Scholar
  27. 27.
    Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solution for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)zbMATHCrossRefGoogle Scholar
  28. 28.
    Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)zbMATHGoogle Scholar
  29. 29.
    Zhang, J., Kwok, D.Y.: Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Phys. Rev. E 73, 047702 (2006)CrossRefGoogle Scholar
  30. 30.
    Kaoui, B., Ristow, G.H., Cantat, I., et al.: Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77, 021903 (2008)CrossRefGoogle Scholar
  31. 31.
    Coupier, G., Kaoui, B., Podgorski, T., et al.: Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20, 111702 (2008)CrossRefGoogle Scholar
  32. 32.
    Fahraeus. R.: The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)Google Scholar
  33. 33.
    Li, H., Ma,. G.: Modeling performance of a two-dimensional capsule in a microchannel flow: Long-term lateral migration. Phys. Rev. E 82, 026304 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations