Skip to main content
Log in

A computational study of a capsule lateral migration in microchannel flow

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re ≈ 0.01. The capsule is modeled as a liquid drop surrounded by a neo-Hookean elastic membrane. The numerical model combines immersed boundary with lattice Boltzmann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular capsule. The wall effect becomes stronger as the capsule initial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is decreased, thus, the capsule motion is slower than the background flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwak, S., Pozrikidis, C.: Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13, 1234–1244 (2001)

    Article  Google Scholar 

  2. Ramanujan, S., Pozrikidis, C.: Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117–143 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pozrikidis, C.: Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. FluidMech. 297, 123–152 (1995)

    MATH  Google Scholar 

  4. Eggleton, CD., Popel, A.S.: Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10, 1834–1845 (1998)

    Article  Google Scholar 

  5. Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dupin, M.M., Halliday, I., Care, C.M., et al.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707 (2007)

    Article  Google Scholar 

  7. Bagchi, P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 858–1877 (2007)

    Article  Google Scholar 

  8. Sun, C., Migliorini, C., Munn, L.L.: Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85, 208–222 (2003)

    Article  Google Scholar 

  9. Sun, C., Munn, L.L.: Particulate nature of blood determines macroscopic rheology: A 2-D lattice Boltzmann analysis. Biophys. J. 88, 1635–1645 (2005)

    Article  Google Scholar 

  10. Zhang, J., Johnson, P.C., Popel, A.S.: An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4, 285–295 (2007)

    Article  Google Scholar 

  11. Zhang, J., Johnson, P.C., Popel, A.S.: Red blood cell aggregation and dissociation in shear flows simulated bylattice Boltzmann method. J. Biomech. 41, 47–55 (2008)

    Article  Google Scholar 

  12. Zhang, J., Johnson, P.C., Popel, A.S.: Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77, 265–272 (2009)

    Article  Google Scholar 

  13. Sun, C., Munn, LL.: Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: a lattice Boltzmann analysis. Phys. A 362, 191–196 (2006)

    Article  Google Scholar 

  14. Ma, G., Hua, J., Li, H.: Numerical modeling of the behavior of an elastic capsule in a microchannel flow: The initial motion. Phys. Rev. E 79, 046710 (2009)

    Article  Google Scholar 

  15. Xiong, W., Zhang, J.: Shear stress variation induced by red blood cell motion in microvessel. Ann. Biomed. Eng. 38, 2649–2659 (2010)

    Article  Google Scholar 

  16. Wang, T., Xing, Z.: Characterization of blood flow in capillaries by numerical simulation. Journal of Modern Physics 1, 349–335 (2010)

    Article  Google Scholar 

  17. Doddi, S., Baghchi P.: Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiphase Flow 34, 966–986 (2008)

    Article  Google Scholar 

  18. Pozrikidis, C.: Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503 (2005)

    Article  MathSciNet  Google Scholar 

  19. Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhu, L.D., He, G.W., Wang, S.Z., et al.: An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application. Comput. Math. Appl. 61, 3506–3518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part II. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    Article  MathSciNet  Google Scholar 

  22. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation. J. Fluid Mech. 271, 285–310 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Navidbakhsh, M., Rezazadeh, M.: An immersed boundary lattice Boltzmann model for simulation of malaria-infected red blood cell in microchannel, Scientia Iranica 19, 1329–1336 (2012)

    Article  Google Scholar 

  24. Succi, S.: The Lattice Boltzmann Equation for Fluid Mechanics and Beyond, Clarendon Press, Oxford, UK (2001)

    Google Scholar 

  25. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)

    Article  Google Scholar 

  26. Bagchi, P.C. Johnson, P.S., Popel, A.: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127, 1070–1080 (2005)

    Article  Google Scholar 

  27. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solution for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  28. Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  29. Zhang, J., Kwok, D.Y.: Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Phys. Rev. E 73, 047702 (2006)

    Article  Google Scholar 

  30. Kaoui, B., Ristow, G.H., Cantat, I., et al.: Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77, 021903 (2008)

    Article  Google Scholar 

  31. Coupier, G., Kaoui, B., Podgorski, T., et al.: Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20, 111702 (2008)

    Article  Google Scholar 

  32. Fahraeus. R.: The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)

    Google Scholar 

  33. Li, H., Ma,. G.: Modeling performance of a two-dimensional capsule in a microchannel flow: Long-term lateral migration. Phys. Rev. E 82, 026304 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navidbakhsh, M., Rezazadeh, M. A computational study of a capsule lateral migration in microchannel flow. Acta Mech Sin 29, 513–525 (2013). https://doi.org/10.1007/s10409-013-0034-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0034-1

Keywords

Navigation