Skip to main content
Log in

The interactions between bloodstream and vascular structure on aortic dissecting aneurysmal model: A numerical study

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Stent-graft implantation is an important means of clinical treatment for aortic dissecting aneurysm (ADA). However, researches on fluid dynamics effects of stent were rare. Computer simulation was used to investigate the interactions between bloodstream and vascular structure in a stented ADA, which endures the periodic pulse velocity and pressure. We obtained and analyzed the flow velocity distribution, the wall displacement and wall stress in the ADA. By comparing the different results between a non-stented and a stented ADA, we found that the insertion of a vascular graft can make the location of maximum stress and displacement move from the aneurysm lumen wall to the artery wall, accompanied with a greatly decrease in value. These results imply that the placement of a stent-graft of any kind to occlude ADA will result in a decreased chance of rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duncan, J.M., Cooley, D.A.: Aortic aneurysms. Acute Care 13, 74–96 (1987)

    Google Scholar 

  2. Crisler, C., Bahnson, H.T.: Aneurysms of the aorta. Curr. Probl. Surg. 12, 1–64 (1972)

    Google Scholar 

  3. Li, Z., Kleinstreuer, C.: Analysis of biomechanical factors affecting stent-graft migration in an AAA model. J. Biomech. 39, 2264–2273 (2006)

    Article  Google Scholar 

  4. Bickerstaff, L.K., Pairolero, P.C., Hollier, L.H., et al.: Thoracic aortic aneurysms: A population based study. Surgery 92, 1103–1108 (1982)

    Google Scholar 

  5. Pressler, V., McNamara, J.J.: Aneurysm of the thoracic aorta. J. Thorac. Cardiovasc. Surg. 89, 50–54 (1985)

    Google Scholar 

  6. Pressler, V., McNamara, J.J.: Thoracic aortic aneurysm: natural history and treatment. J. Thorc. Cardiovasc. Surg. 79, 489–498 (1980)

    Google Scholar 

  7. Sorenson, H.R., Olsen, H.: Ruptured and dissecting aneurysms of the aorta: Incidence and prospects of surgery. Acta. Chir. Scand. 128, 644–650 (1964)

    Google Scholar 

  8. Pate, J.W., Richardson, R.J., Eastridge, C.E.: Acute aortic dissections. Ann. Surg. 42, 395–404 (1976)

    Google Scholar 

  9. Fukushima, T., Matsuzawa, T., Homma, T.: Visualization and finite element analysis of pulsatile flow in models of the AAA. Biorheology 24, 109–130 (1989)

    Google Scholar 

  10. Egelhoff, C.J., Budwig, R.S., Elger, D.F., et al.: A model study of pulsatile flow regimens in AAAs. In: Proceedings of ASME FEDSM97-34-31, ASME Fluids Engineering Division Summer Division Meeting, Vancouver, Canada (1997)

    Google Scholar 

  11. Budwig, R., Elger, D., Hooper, H., et al.: Steady flow in AAA models. ASME Journal of Biomechanical Engineering 115, 418–423 (1993)

    Article  Google Scholar 

  12. Asbury, C.L., Ruberti, J.W., Bluth, E.I., et al.: Experimental investigations of steady flow in rigid models of AAAs. Journal of Biomedical Engineering 23, 29–39 (1995)

    Google Scholar 

  13. Bluestein, D., Niu, L., Schoephoerster, R.T., et al.: Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. SME Journal of Biomechanical Engineering 118, 280–286 (1996)

    Article  Google Scholar 

  14. Yu, S.C.M., Chan, W.K., Ng, B.T.H., et al.: A numerical investigation on the steady and pulsatile flow characteristics in axi-symmetric AAA models with some experimental evaluation. Journal of Medical Engineering & Technology 23, 228–239 (1999)

    Article  Google Scholar 

  15. Di Martino, E.S., Guadagni, G.: Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Medical Engineering & Physics 23, 647–655 (2001)

    Article  Google Scholar 

  16. Parodi, J.C., Plahnaz, J.C., Barone, H.D.: Transfemoral intraluminal gran implantation for AAAs. Ann. Vase. Surg. 5, 437–439 (1991)

    Article  Google Scholar 

  17. Dake, M.D., Miller, D.C., Semba, C.P., et al.: Transluminal placement of endovascular stentgraft for the treatment of descending thoracic aortic aneurysms. N. Engl. J. Med. 300, 1729–1734 (1994)

    Article  Google Scholar 

  18. Dake, M.D., Miller, D.C., Mitchell, R.S., et al.: The first generation of endovascular stent-grafts for patients with descending thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 116, 689–704 (1998)

    Article  Google Scholar 

  19. Zhang, X.W., Yao, Z.H., Zhang, Y.: Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts. Acta Mechanica Sinica 23, 495–501 (2007)

    Article  MathSciNet  Google Scholar 

  20. Borghi, A., Wood, N.B., Mohiaddin, R.H., et al.: Fluid-solid interaction simulation of flow and stress pattern in thoracoadominal aneurysms: A patient-specific study. Journal of Fluids and Structures 24, 270–280 (2008)

    Article  Google Scholar 

  21. Chaer, R.A., DeRubertis, B.G., Hynecek, R., et al.: Models of AAA: Characterization and clinical applications. Vascular 14, 343–352 (2006)

    Article  Google Scholar 

  22. Thurbrikar, M., Al-Soudi, J., Robicsek, F.: Wall stress studies of aortic aneuysm abdominal in a clinical model. Ann. Vasc. Surg. 3, 355–366 (2001)

    Article  Google Scholar 

  23. Meter, O.: Numerical simulation and experimental validation of blood flow in arteies with structured-tree outflow conditions. Ann. Biomed. Eng. 28, 94–98 (2000)

    Article  Google Scholar 

  24. Fung, Y.C.: Biomechanics: Circulation, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  25. Liu, X., Fan, Y., Deng, X., et al.: Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. Journal of Biomechanics 44, 1123–1131 (2011)

    Article  Google Scholar 

  26. Liu, X., Pu, F., Fan, Y., et al.: A numerical study on the flow of blood and the transport of LDL in the human aorta: The physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297, 163–170 (2009)

    Article  Google Scholar 

  27. Liu, X., Fan, Y., Deng, X.: Effect of spiral flow on the transport of oxygen in the aorta: A numerical study. Annals of Biomedical Engineering 38, 917–926 (2010)

    Article  Google Scholar 

  28. Perktold, K., Peter, R., Resch, M.: Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26, 1011–1030 (1989)

    Google Scholar 

  29. Chen, Z., Fan, Y., Deng, X., et al.: Swirling flow can suppress flow disturbances in endovascular stents: A numerical study. ASAIO J. 55, 543–549 (2009)

    Article  Google Scholar 

  30. Vorp, D.A., Raghavan, M.L., Webster, M.W.: Mechanical wall stress in aortic aneuysm abdominal: Influence of diameter and asymmetry. J. Vasc. Surg. 27, 632–639 (1998)

    Article  Google Scholar 

  31. Li, Z.H., Kleinstreuer, C.: Fluid-structure interaction effects on sac-blood pressure and wall stress in a stented aneurysm. Journal of Biomechanical Engineering 127, 662–671 (2005)

    Article  Google Scholar 

  32. Li, Z.H., Kleinstreuer, C.: Blood flow and structure interactions in a stented AAA model. Medical Engineering and Physics 27, 369–382 (2005)

    Article  Google Scholar 

  33. Chen, Z., Fan, Y., Deng, X., et al.: A new way to reduce flow disturbance in endovascular stents: A numerical study. Artif. Organs. 35, 392–397 (2011)

    Article  MATH  Google Scholar 

  34. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupure potential of aortic aneuysm abdominal: Indentification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000)

    Article  Google Scholar 

  35. Wang, X., Li, X.: Fluid-structure interaction based study on the physiological factors affecting the behaviors of stented and non-stented thoracic aortic aneurysms. J. Biomech. 44, 2177–2184 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Wen Zhang.

Additional information

The project was supported by the National Natural Science Foundation of China (11172156 and 30970822) and the National Science Foundation for Post-doctoral Scientists of China (2012M510021).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZS., Fan, ZM. & Zhang, XW. The interactions between bloodstream and vascular structure on aortic dissecting aneurysmal model: A numerical study. Acta Mech Sin 29, 462–468 (2013). https://doi.org/10.1007/s10409-013-0026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0026-1

Keywords

Navigation