Skip to main content
Log in

A robust shell element in meshfree SPH method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

With the incorporation of total Lagrangian smoothed particle hydrodynamics (SPH) method equation and moving least square (MLS) function, the traditional SPH method is improved regarding the stability and consistency. Based on Mindlin-Ressiner plate theory, the SPH method simulating dynamic behavior via one layer of particles is applied to plate’s mid-plane, i.e., a SPH shell model is constructed. Finally, through comparative analyses on the dynamic response of square, stiffened shells and cylindrical shells under various strong impact loads with common finite element software, the feasibility, validity and numerical accuracy of the SPH shell method are verified. Consequently, further researches on SPH shell may well pave the way towards solving problems involving dynamic plastic damage, tearing or even crushing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Unossona, M., Olovssona, L., Simonssonb, K: Failure modelling in finite element analyses: Element erosion with cracktip enhancement. Finite Elements in Analysis and Design 42, 283–297 (2006)

    Article  Google Scholar 

  3. Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal of Numerical Methods in Engineering 46, 133–150 (1999)

    Article  Google Scholar 

  4. Monaghan, J.J.: An introduction to SPH. Computer Physics Communications 48, 89–96 (1982)

    Article  Google Scholar 

  5. Li, S., Hao, W., Liu, W.K.: Numerical simulations of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25, 102–116 (2000)

    Article  MATH  Google Scholar 

  6. Cui, X., Liu, G.R., Li, G., et al.: Analysis of plates and shells using an edge-based smoothed finite element method. Computational Mechanics 45, 141–156 (2009)

    Article  MathSciNet  Google Scholar 

  7. Garica, O.A., Fancello, E.A., de Tarso, R., et al.: Developments in the application of the generalized finite element method to thick shell problems. Computational Mechanics 44, 669–682 (2009)

    Article  Google Scholar 

  8. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Miao, Y., Wang, Y.: Development of hybrid boundary node method in two dimensional elasticity. Engineering Analysis with Boundary Element 29, 703–712 (2005)

    Article  MATH  Google Scholar 

  11. Wang, Q., Miao, Y., Zhu, H., et al.: An O (N) fast multiple hybrid boundary node method for 3D elasticity. Computers, Materials & Continua 28, 1–26 (2012)

    MATH  Google Scholar 

  12. Miao, Y., He, T., Luo, H., et al.: Dual hybrid boundary node method for solving transient dynamic fracture problems. Computer Modeling in Engineering & Science 85, 481–498 (2012)

    MathSciNet  Google Scholar 

  13. Belytschko, T., Gu, L., Lu, Y.Y.: Fracture and crack growth by element-free Galerkin methods. Modelling and Simulation in Materials Science and Engineering 2, 519–534 (1994)

    Article  Google Scholar 

  14. Krysl, P., Belytschko, T.: Analysis of thin shells by the element-free Galerkin method. International Journal of Solids and Structures 33, 3057–3080 (1996)

    Article  MATH  Google Scholar 

  15. Rabczuk, T., Areias, P.M.A., Belytschko, T.: A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering 72, 524–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181, 375–389 (1977)

    MATH  Google Scholar 

  17. Monaghan, J.J.: Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 543–574 (1992)

    Article  Google Scholar 

  18. Gray, J.P., Monaghan, J.J.: SPH elastic dynamics. Computer Methods in Applied Mechanics and Engineering 190, 6641–6662 (2001)

    Article  MATH  Google Scholar 

  19. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics 191, 448–475 (2003)

    Article  MATH  Google Scholar 

  20. Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering 139, 375–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maurel, B., Combescure, A.: An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. International Journal for Numerical Methods in Engineering 76, 949–971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dilts, G.A.: Moving least squares particle hydrodynamics—I: consistency and stability. International Journal for Numerical Methods in Engineering 44, 1115–1155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Belytschko, T., Rabczuk, T., Xiao, S.P.: Stable particle methods based on Lagrangian kernels. Computer Methods in Applied Mechanics and Engineering 193, 1035–1063 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dyka, C.T., Ingel, R.P.: An approach for tensile instability in smoothed particle hydrodynamics. Computers and Structures 57, 573–580 (1995)

    Article  MATH  Google Scholar 

  25. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  26. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, Ltd, New York (2000)

    MATH  Google Scholar 

  27. Noguchi, H., Kawashima, T., Miyamura, T.: Element free analyses of shell and spatial structures. International Journal for Numerical Methods in Engineering 47, 1215–1240 (2000)

    Article  MATH  Google Scholar 

  28. Oh, H.S., Davis, C., Jeong, J.W.: Meshfree particle methods for thin plates. Computer Methods AppliedMechanics and Engineering 209–212, 156–171 (2012)

    Article  MathSciNet  Google Scholar 

  29. Donning, B.M., Liu, W.K.: Meshless methods for sheardeformable beams and plates. Computer Methods in Applied Mechanics and Engineering 152, 47–71 (1998)

    Article  MATH  Google Scholar 

  30. Caleyron, F., Combescure, A., Faucher, V., et al.: Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells. International Journal for Numerical Methods in Engineering 90, 707–738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, D., Chen, J.S.: Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Computer Methods in Applied Mechanics and Engineering 193, 1065–1083 (2003)

    Article  Google Scholar 

  32. Kanok-Nukulchai, W., Bary, W., Saran-Yasoontorn, K., et al.: On elimination of shear locking in the element-free Galerkin method. International Journal for Numerical Methods in Engineering 52, 705–725 (2001)

    Article  MATH  Google Scholar 

  33. Dyka, C.T., Randles, P.W., Ingel, R.P.: Stress points for tensile instability in SPH. International Journal for Numerical Methods in Engineering 40, 2325–2341 (1997)

    Article  MATH  Google Scholar 

  34. Belytschko, T., Guo, Y., Liu, W.K., et al.: A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering 40, 1359–1400 (2000)

    Article  MathSciNet  Google Scholar 

  35. Randles, P.W., Libersky, L.D.: Normalized SPH with stress points. International Journal for Numerical Methods in Engineering 48, 1445–1462 (2000)

    Article  MATH  Google Scholar 

  36. Monaghan, J.J., Gingold, R.A.: Shock simulation by the particle method SPH. Journal of Computational Physics 52, 374–389 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-Man Zhang.

Additional information

The project was supported by the Llyod’s Register Educational Trust (The LRET), the National Natural Science Foundation of China (50939002) and the Excellent Young Scientists Fund (51222904).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ming, FR., Zhang, AM. & Cao, XY. A robust shell element in meshfree SPH method. Acta Mech Sin 29, 241–255 (2013). https://doi.org/10.1007/s10409-013-0017-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0017-2

Keywords

Navigation