Skip to main content
Log in

Studies on sensitivity to tension and gating pathway of MscL by molecular dynamic simulation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Mechanosensitive (MS) ion channels play an important role in various physiological processes. Although the determination of the structure of mechanosensitive channel of large conductance (MscL) makes the simulation study possible, it has not so far been possible to directly simulate the gating mechanism of MscL in atomic detail. In this article, MscL has been studied via molecular dynamic (MD) simulations to gain a detailed description of the sensitivity to lateral tension and the gating pathway. MscL undergoes conformational rearrangement in sustaining lateral tension, and the open state is obtained when 2.0MPa lateral tension is directly applied on the pure protein. During the opening process, Loop region responds to tension first, and the mechanical sensitivity is followed by S1 domain. Transmembrane (TM) bundle is the key position for channel opening, and the motion of TM1 helices finally realizes the significant expansion of the constricted gating pore. C-terminus domain presents expansion later during the TM opening. In our study, return of the whole protein to the initial closed state is achieved only in the early opening stage. During the relaxation from the open state, the TM helices are the most mobile domain, which is different from the opening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, B.: Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. (Lond.) 111, 261–282 (1950)

    Google Scholar 

  2. Loewenstein, W. R.: The generation of electric activity in a nerve ending. Ann. NY Acad. Sci. 81, 367–387 (1959)

    Article  Google Scholar 

  3. Detweiler, P. B.: Sensory transduction. In: Patton, H.D., Fuchs, A.F., Hille, B., et al., eds. Textbook of Physiology, Excitable Cells and Neurophysiology. Saunders Company, Philadelphia, 98–129 (1989)

    Google Scholar 

  4. García-Añovernos, J., Corey, D.P.: The molecules of mechanosensation. Annu. Rev. Neurosci. 20, 567–594 (1997)

    Article  Google Scholar 

  5. Sachs, F., Morris, C.E.: Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol. 132, 1–77 (1998)

    Article  Google Scholar 

  6. Hamill, O.P., Martinac, B.: Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001)

    Google Scholar 

  7. Gillespie, P.G., Walker, R.G.: Molecular basis of mechanotransduction. Nature 413, 194–202 (2001)

    Article  Google Scholar 

  8. Corey, D.P.: Sensory transduction in the ear. J. Cell Sci. 116, 1–3 (2003)

    Article  Google Scholar 

  9. Corey, D.P.: New TRP channels in hearing and mechanosensation. Neuron 39, 585–588 (2003)

    Article  Google Scholar 

  10. Guharay, F., Sachs, F.: Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J. Physiol. 352, 685–701 (1984)

    Google Scholar 

  11. Brehm, P., Kullberg, R., Moody-Corbet, F.: Properties of nonjunctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol. 350, 631–648 (1984)

    Google Scholar 

  12. Sachs, F.: Mechanical transduction in biological systems. Crit. Rev. Biomed. Eng. 16, 141–169 (1988)

    Google Scholar 

  13. Morris, C.E.: Mechanosensitive ion channels. J. Membr. Biol. 113, 93–107 (1990)

    Article  Google Scholar 

  14. Martinac, B.: Mechanosensitive ion channels: Biophysics and physiology. In: Jackson, M.B. ed. Thermodynamics of Membrane Receptors and Channels. CRC Press, Boca Raton, 327–351 (1993)

    Google Scholar 

  15. Martinac, B., Delcour, A.H., Buechner, M., et al.: Mechanosensitive ion channels in bacteria. In: Ito, F., ed. Comparative Aspects of Mechanoreceptor Systems. Springer Verlag, New York, 3–18 (1992)

    Chapter  Google Scholar 

  16. Martinac, B., Buechner, M., Delcour, A.H., et al.: Pressuresensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301 (1987)

    Article  Google Scholar 

  17. Sukharev, S.I., Blount, P., Martinac, B., et al.: A large mechanosensitive channel in E. coli encoded by MscL alone. Nature 368, 265–268 (1994)

    Article  Google Scholar 

  18. Sukharev, S.I., Martinac, B., Arshavsky, V.Y., et al.: Two types of mechanosensitive channels in the E. coli cell envelope: Solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993)

    Article  Google Scholar 

  19. Sukharev, S.I., Blount, P., Martinac, B., et al.: Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities. Ann. Rev. Physiol. 59, 633–657 (1997)

    Article  Google Scholar 

  20. Zoratti, M. Ghazi, A.: Stretch activated channels in prokaryotes. In: Bakker, E.P. ed. Alkali Transport Systems in Prokaryotes. CRC Press, Boca Raton, 349–358 (1993)

    Google Scholar 

  21. Berrier, C., Besnard, M., Ajouz, B., et al.: Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol. 151, 175–187 (1996)

    Article  Google Scholar 

  22. Martinac, B.: Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem. 11, 61–76 (2001)

    Article  Google Scholar 

  23. Strop, P., Bass, R., Rees, D.C.: Prokaryotic mechanosensitive channels. In: Rees, D.C., ed. Advances in Protein Chemistry. Membrane Proteins. Academic Press, Amsterdam, 63, 177–209 (2003)

    Chapter  Google Scholar 

  24. Le Dain, A.C., Saint, N., Kloda, A., et al.: Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem. 273, 12116–12119 (1998)

    Article  Google Scholar 

  25. Kloda, A., Martinac, B.: Mechanosensitive channels of Bacteria and Archaea share a common ancestral origin. Eur. Biophys. J. 31, 14–25 (2002)

    Article  Google Scholar 

  26. Tavernarakis, N., Driscoll, M.: Molecular modelling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol. 59, 659–689 (1997)

    Article  Google Scholar 

  27. Colbert, H.A., Smith, T.L., Bargmann, C.I.: Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation and olfactory adapation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997)

    Google Scholar 

  28. Alvarez de la Rosa, D., Canessa, C.M., Fyfe, G.K., et al.: Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62, 573–594 (2000)

    Article  Google Scholar 

  29. Liedtke, W., Choe, Y., Marti-Renom, M.A., et al.: Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000)

    Article  Google Scholar 

  30. Walker, R.G., Willingham, A.T., Zuker, C.S.: A Drosophilia mechanosensory transduction channel. Science 287, 2229–2234 (2000)

    Article  Google Scholar 

  31. Di Palma, F., Belyantseva, I.A., Kim, H.J., et al.: Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA 99, 14994–14999 (2002)

    Article  Google Scholar 

  32. Kim, J., Chung, Y.D., Park, D.Y., et al.: A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003)

    Article  Google Scholar 

  33. Sidi, S., Friedrich, R.W., Nicolson, T.: NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301, 96–99 (2003)

    Article  Google Scholar 

  34. Minke, B., Cook, B.: TRP channel proteins and signal transduction. Physiol. Rev. 82, 429–472 (2002)

    Google Scholar 

  35. Ajouz, B., Berrier, C., Garrigues, A., et al.: Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem. 273, 26670–26674 (1998)

    Article  Google Scholar 

  36. Moe, P.C., Levin, G., Blount, P.: Correlating a protein structure with function of a bacterial mechanosensitive channel. J. Biol. Chem. 275, 31121–31127 (2000)

    Article  Google Scholar 

  37. Sukharev, S., Blount, P., Martinac, B., et al.: MscL: A mechanosensitive channel in Escherichia coli. Soc. Gen. Physiol. Ser. 51, 133–141 (1996)

    Google Scholar 

  38. Sukharev, S., Betanzos, M., Chiang, C.S., et al.: The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001)

    Article  Google Scholar 

  39. Perozo, E., Cortes, D.M., Sompornpisut, P., et al.: Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002)

    Article  Google Scholar 

  40. Moe, P., Blount, P.: Assessment of potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension, and lipid headgroups. Biochemistry 44, 12239–12244 (2005)

    Article  Google Scholar 

  41. Chang, G., Spencer, R., Lee, A., et al.: Structure of the MscL homologue from Mycobacterium tuberculosis, a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998)

    Article  Google Scholar 

  42. Bass, R.B., Strop, P., Barclay, M., et al.: Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002)

    Article  Google Scholar 

  43. Martinac, B.: Mechanosensitive ion channels: Molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004)

    Article  Google Scholar 

  44. Perozo, E., Rees, D.: Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13, 432–442 (2003)

    Article  Google Scholar 

  45. Gustin, M.C., Zhou, X.L., Martinac, B., et al.: A mechanosensitive ion channel in the yeast plasma membrane. Science 242, 762–765 (1988)

    Article  Google Scholar 

  46. Perozo, E.: Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell Biol. 7, 109–119 (2006)

    Article  Google Scholar 

  47. Gullingsrud, J., Kosztin, D., Schulten, K.: Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J. 80, 2074–2081 (2001)

    Article  Google Scholar 

  48. Elmore, D.E., Dougherty, D.A.: Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J. 81, 1345–1359 (2001)

    Article  Google Scholar 

  49. Bilston, L., Mylvaganam, K.: Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett. 512, 185–190 (2002)

    Article  Google Scholar 

  50. Kong, Y., Shen, Y., Warth, T.E., et al.: Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA. 99, 5999–6004 (2002)

    Article  Google Scholar 

  51. Colombo, G., Marrink, S.J., Mark, A.E.: Simulation of MscL gating in a bilayer under stress. Biophys J. 84, 2331–2337 (2003)

    Article  Google Scholar 

  52. Elmore, D.E., Dougherty, D.A.: Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J. 85, 1512–1524 (2003)

    Article  Google Scholar 

  53. Gullingsrud, J., Schulten, K.: Gating of MscL studied by steered molecular dynamics. Biophys J. 85, 2087–2099 (2003)

    Article  Google Scholar 

  54. Gullingsrud, J., Schulten, K.: Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J. 86, 3496–3509 (2004)

    Article  Google Scholar 

  55. Meyer, G.R., Gullingsrud, J., Schulten, K., et al.: Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys. J. 91, 1630–1637 (2006)

    Article  Google Scholar 

  56. Jonggu J., Gregory, A.V.: Gating of the mechanosensitive channel protein MscL: The interplay of membrane and protein. Biophys. J. 94, 3497–3511 (2008)

    Article  Google Scholar 

  57. Ajouz, B., Berrier, C. Besnard, M., et al.: Contribution of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J. Biol. Chem. 275, 1015–1022 (2000)

    Article  Google Scholar 

  58. Colombo, G., Marrink, S.J., Mark, A.E.: Simulation of MscL gating in a bilayer under stress. Biophys J. 84, 2331–2337 (2003)

    Article  Google Scholar 

  59. Debret, G., Valadié, H., Stadler, A.M., et al.: New insights of membrane environment effects on MscL channel mechanics from theoretical approaches. Proteins 71, 1183–1196 (2007)

    Article  Google Scholar 

  60. Powl, A.M., East, J.M., Lee, A.G.: Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL. Biochemistry 47, 12175–12184 (2008)

    Article  Google Scholar 

  61. Tang, Y., Yoo, J., Yethiraj, A., et al.: Gating mechanisms of mechanosensitive channels of large conductance, II: systematic study of conformational transitions. Biophys J. 95, 581–596 (2008)

    Article  Google Scholar 

  62. Tang, Y., Yoo, J., Yethiraj, A., et al.: Mechanosensitive channels: insights from continuum-based simulations. Cell Biochem. Biophys. 52, 1–18 (2008)

    Article  Google Scholar 

  63. Ursell, T., Huang, K.C., Peterson, E., et al.: Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol. 3, 803–812 (2007)

    Article  Google Scholar 

  64. Boucher, P.A., Catherine, E.M., Bela, J.: Mechanosensitive closed-closed transitions in large membrane proteins: osmoprotection and tension damping. Biophys J. 97, 2761–2770 (2009)

    Article  Google Scholar 

  65. Grage, S.L., Keleshian, A.M., Turdzeladze, T, et al.: Bilayermediated clustering and functional interaction of MscL channels. Biophys J. 100, 1252–1260 (2011)

    Article  Google Scholar 

  66. Hess, B., Kutzner, C., Spoel, D.V., et al.: GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  Google Scholar 

  67. Humphrey, W., Dalke, A., Schulten, K.: VMD — visual molecular dynamics. J. Molec. Graphics. 14, 33–38 (1996)

    Article  Google Scholar 

  68. Steinbacher, S., Bass, R., Rees, D.C.: Structures of the prokaryotic mechanosensitive channels MscL and MscS. Curr. Top. Membr. 58, 1–24 (2007)

    Article  Google Scholar 

  69. van Gunsteren, W.F., Berendsen, H.J.C.: Molecular Simulation (GROMOS) Library Manual, BIOMOS b.v., Groningen (1987)

    Google Scholar 

  70. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43–56 (1995)

    Article  Google Scholar 

  71. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317 (2001)

    Google Scholar 

  72. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., et al.: Interaction models for water in relation to protein hydration. In: Pullman, B. ed. Intermolecular Forces. Reidel, Dordrecht, The Netherlands. 331–342 (1981)

    Chapter  Google Scholar 

  73. Hess, B., Bekker, H., Berendsen, H.J.C., et al.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  Google Scholar 

  74. Essman, U., Perera, L., Berkowitz, M.L., et al.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8592 (1995b)

    Article  Google Scholar 

  75. Patra, M., Karttunen, M., Hyvonen, M., et al.: Molecular dynamics simulations of lipid bilayers: Major artifacts due to truncating electrostatic interactions. Biophys. J. 84, 3636–3645 (2003)

    Article  Google Scholar 

  76. Wong-ekkabut, J., Miettinen, M., Dias, C., et al.: Static charges can not drive a continuous flow of water molecules through a carbon nanotube. Nature Nanotechnology 5, 555–557 (2010)

    Article  Google Scholar 

  77. Karttunen, M., Rottler, J., Vattulainen, I., et al.: Electrostatics in biomolecular simulations: Where are we now and where are we heading. Current Topics in Membranes 60, 49–89 (2008)

    Article  Google Scholar 

  78. Patra, M., Karttunen, M., Hyvönen, M.T., et al.: Lipid bilayers driven to a wrong lane in molecular dynamics simulations by truncation of long-range electrostatic interactions. J. Phys. Chem. B 108, 4485–4494 (2004)

    Article  Google Scholar 

  79. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  80. Nose, S., Klein, M.: Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983)

    Article  Google Scholar 

  81. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981)

    Article  Google Scholar 

  82. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2, 433–459 (2010)

    Article  Google Scholar 

  83. Sukharev, S., Betanzos, M., Chiang, C.S., et al.: Structural models of the MscL gating mechanism. Biophys. J. 81, 917–936 (2001b)

    Article  Google Scholar 

  84. Yefimov, S., van der Giessen, E., Onck, P.R., et al.: Mechanosensitive membrane channels in action. Biophys. J. 94, 2994–3002 (2008)

    Article  Google Scholar 

  85. Yoo, J., Cui, Q.: Curvature generation and pressure profile modulation in membrane by lysolipids: Insights from Coarse-Grained simulations. Biophys J. 97, 2267–2276 (2009)

    Article  Google Scholar 

  86. Li, D., Liu, M.S., Ji, B., et al.: Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. J. Chem. Phys. 130, 215102 (2009)

    Article  Google Scholar 

  87. Li, D., Ji, B., Hwang, K.C., et al.: Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. Plos One. 6, 19268 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hong Ding.

Additional information

The project was supported by the National Basic Research Program of China (973 Program) (2012CB518502), the National Natural Science Foundation of China (81102630), the Shanghai Leading Academic Discipline Project (S30304, B112), the Science Foundation of Shanghai Municipal Commission of Science and Technology (09DZ1976600, 09dZ1974303, 10DZ1975800) and the Fudan Science Foundation for Young (09FQ07).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, JY., Ding, GH. Studies on sensitivity to tension and gating pathway of MscL by molecular dynamic simulation. Acta Mech Sin 29, 256–266 (2013). https://doi.org/10.1007/s10409-013-0013-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0013-6

Keywords

Navigation