Skip to main content
Log in

Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of flexible thin tethers, sail membranes, and tip masses. A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts. The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses. The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method, and thus the deployment dynamics of the system can be well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuerch, H. U., MacNeal, R.: Deployable centrifugally stabilized structures for atmospheric entry from space. NASA CR-69 (1964)

    Google Scholar 

  2. Melnikov, V. M., Koshelev, V. A.: Large Space Structures Formed by Centrifugal Forces. (1st edn.) Earth Space Institute Book Series, Gordon and Breach, Amsterdam 4, 21–61 (1998)

    Google Scholar 

  3. Nakasuka, S., Aoki, T., Ikeda, I., et al.: “Furoshiki Satallite”-a large membrane structure as a novel space system. Acta Astronautica 48, 461–468 (2001)

    Article  Google Scholar 

  4. Ruggiero, E.J., Inman, D.J.: Gossamer spacecraft: recent trends in design, analysis, experimentation, and control. Journal of Spacecraft and Rockets 43, 10–24 (2006)

    Article  Google Scholar 

  5. Mori, O., Sawada, H., Hanaoka, F., et al.: Development of deployment system for small size solar sail mission. Transaction of JSASS, Space Technology Japan 7, Pd 87–Pd 94 (2009)

    Google Scholar 

  6. Mori, O., Sawada, H., Funase, R., et al.: First solar power sail demonstration by IKAROS. In: Proc. of the 27th International Symposium on Space Technology and Science, 2009-o-4-07v (2009)

    Google Scholar 

  7. Tsuda, Y., Mori, O., Funase, R., et al.: Flight status of IKAROS deep space solar sail demonstrator. Acta Astronautica 69, 833–840 (2011)

    Article  Google Scholar 

  8. Gardsback, M., Tibert, G., Izzo, D.: Design consideration and deployment simulations of spinning space webs. In: Proc. of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2007-1829, Honolulu, Hawaii, USA, 23–26 April (2007)

    Google Scholar 

  9. Gardsback, M., Tibert, G.: Deployment control of spinning space webs. Journal of Guidance, Control and Dynamics 32, 40–50 (2009)

    Article  Google Scholar 

  10. Gardsback, M., Tibert, G.: Optimal deployment control of spinning space webs and membranes. Journal of Guidance, Control and Dynamics 32, 1519–1530 (2009)

    Article  Google Scholar 

  11. Shirasawa, Y., Mori, O., Miyazaki, Y., et al.: Analysis of membrane dynamics using multi-particle model for solar sail demonstrator “IKAROS”. In: Proc. of 52nd AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics, andMaterials Conference, AIAA 2011-1890, Denver, Colorado, USA, 4–7 April (2011)

    Google Scholar 

  12. Haraguchi, D., Sakamoto, H., Shirasawa, Y., et al.: Design criteria for spin deployment of gossamer structures considering nutation dynamics. In: AIAA Guidance, Navigation, and Control Conference, AIAA 2010-8072, Toronto, Ontario, Canada, 2–5 August (2010)

    Google Scholar 

  13. Sakamoto, H., Shirasawa, Y., Haraguchi, D., et al.: A spinup control scheme for contingency deployment of the sailcraft IKAROS. In: Proc. of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2011-1892, Denver, Colorado, 4–7 April (2011)

    Google Scholar 

  14. Miyazaki, Y., Shirasawa, Y., Mori, O., et al.: Finite element analysis of deployment of gossamer space structure. In: Multibody Dynamics 2011, ECCOMAS Thematic Conference, Brussels, Belgium, 4–7 July (2011)

    Google Scholar 

  15. Miyazaki, Y.: A Formulation of geometrical constraint in energy momentum method. Theoretical and Applied Mechanics Japan 52, 211–221 (2003)

    Google Scholar 

  16. Miyazaki, Y., Kodama, T.: Formulation and interpretation of the equation of motion on the basis of the energy-momentum method. Journal of Multi-body Dynamics 218, 1–7 (2004)

    Google Scholar 

  17. Miyazaki, Y.: Wrinkle/Slack model and finite element dynamics of membrane. International Journal for Numerical Methods in Engineering 66, 1179–1209 (2006)

    Article  MATH  Google Scholar 

  18. Sakamoto, H., Miyazaki, Y., Mori, O.: Transient dynamic analysis of gossamer-appendage deployment using nonlinear finite element method. Journal of Spacecraft and Rockets 48, 881–890 (2011)

    Article  Google Scholar 

  19. Shabana, A.A: Dynamics of Multibody Systems. (2nd edn.) Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Mikkola, A. M., Shabana, A. A.: Non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody System Dynamics 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dmitrodhenko, O. N., Pogorelov, D. Yu.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody System Dynamics 10, 17–43 (2003)

    Article  Google Scholar 

  22. Dufva, K., Shabana, A. A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Journal of Multi-body Dynamics 219, 345–355 (2005)

    Google Scholar 

  23. Dmitrodhenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics 3, 041012 (2008)

    Article  Google Scholar 

  24. Shabana, A. A., Yakoub, R. Y.: Three dimensional absolute nodal coordinate formulation for beam elements: Theory. Journal of Mechanical Design 123, 606–613 (2001)

    Article  Google Scholar 

  25. Yakoub R. Y., Shabana, A. A.: Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and Applications. Journal of Mechanical Design 123, 614–621 (2001)

    Article  Google Scholar 

  26. Omar, M. A., Shabana, A. A.: A two-dimensional shear deformable beam for large rotation and deformation problems. Journal of Sound and Vibration 243, 565–576 (2001)

    Article  Google Scholar 

  27. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dynamics 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  28. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  29. Garcia-Vallejo, D., Escalona, J. L., Mayo, J., et al.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dynamics 34, 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Garcia-Vallejo, D., Mayo, J., Escalona, J. L., et al.: Threedimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody System Dynamics 20, 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tian, Q., Liu, C., Machado, M., et al.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody system. Nonlinear Dynamics 64, 25–47 (2011)

    Article  Google Scholar 

  32. Zhao, J., Tian, Q., Hu, H. Y.: Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics 6, 041013 (2011)

    Article  Google Scholar 

  33. Hussein, B., Negrut, D., Shabana, A. A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dynamics 54, 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tian, Q., Zhang, Y. Q., Chen, L. P., et al: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics 4, 021009 (2009)

    Article  Google Scholar 

  35. Shabana, A. A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems. Journal of Sound and Vibration 327, 557–563 (2009)

    Article  Google Scholar 

  36. Arnold, M., Bruls, O.: Convergence of the generalized-α scheme for constrained mechanical systems. Multibody System Dynamics 18, 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, Q.: Flexible multibody dynamics research and application based on the absolute nodal coordinate method. [Ph.D. Thesis], Huazhong University of Science and Technology, Wuhan, China (2009) (in Chinese)

    Google Scholar 

  38. Tian, Q., Zhang, Y. Q., Chen, L. P., et al.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dynamics 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  39. Liu, C., Tian, Q., Hu, H. Y.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mechanism and Machine Theory 52, 106–129 (2012)

    Article  Google Scholar 

  40. Liu, C., Tian, Q., Hu, H. Y.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody System Dynamics 26, 283–305 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Additional information

The project was supported by the National Natural Science Foundation of China (11221202 and 51075032) and Excellent Young Scholar Research Fund from Beijing Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Tian, Q. & Hu, HY. Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mech Sin 29, 132–142 (2013). https://doi.org/10.1007/s10409-013-0002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0002-9

Keywords

Navigation