Skip to main content
Log in

Thermoelastic stress analysis of multilayered films in a micro-thermoelectric cooling device

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents an analytical solution for the thermoelastic stress in a typical in-plane’s thin-film micro-thermoelectric cooling device under different operating conditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature difference and maximum refrigerating output of the thermoelectric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the temperature difference are formulated based on the theory of multilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and supporting membrane show distinctly different features. The present work may profitably guide the optimization design of high-efficiency micro-thermoelectric cooling devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LaBounty, C., Shakouri, A., Bowers, J. E.: Design and characterization of thin film microcoolers. Journal of Applied Physics 89, 4059–4064 (2001)

    Article  Google Scholar 

  2. Huang, I.Y., Lin, J. C., She, K.D., et al.: Development of lowcost micro-thermoelectric coolers utilizing MEMS technology. Sensors and Actuators A: Physical 148, 176–185 (2008)

    Article  Google Scholar 

  3. Nain, P. K. S., Giri, K. M., Sharma, S., et al.: Multi-objective performance optimization of thermo-electric coolers using dimensional structural parameters. Swarm, Evolutionary, and Memetic Computing 6466, 607–614 (2010)

    Article  Google Scholar 

  4. Spanner, D. C.: The Peltier effect and its use in the measurement of suction pressure. J. Exp. Bot. 2, 145–168 (1951)

    Article  Google Scholar 

  5. Marlow, R., Burke, E.: Module Design and Fabrication. CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, USA, 597–607 (1995)

    Google Scholar 

  6. Ghoshal, U., Schmidt, R.: Refrigeration technologies for subambient temperature operation of computing systems. In: Digest of Technical Papers. ISSCC. IEEE International, San Francisco, USA (2000)

    Google Scholar 

  7. Vöklein, F., Min, G., Rowe, D. M.: Modelling of a microelectromechanical thermoelectric cooler. Sensors and Actuators A: Physical 75, 95–101 (1999)

    Article  Google Scholar 

  8. Yao, D. J.: In-plane MEMS thermoelectric microcooler. [Ph.D. Thesis]. UCLA, USA (2001)

    Google Scholar 

  9. Deng, S., Saiga, K. S., Takabatake, T.: Enhancement of ther moelectric efficiency in type-VIII clathrate Ba8Ga16Sn30 by Al substitution for Ga. J. Appl. Phys. 108, 073705 (2010)

    Article  Google Scholar 

  10. Kikuchi, A., Okinaka, N., Akiyama, T.: A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scripta Materialia 63, 407–410 (2010)

    Article  Google Scholar 

  11. Kim, W., Zide, J., Gossard, A., et al.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Physical Review Letters 96, 045901 (2006)

    Article  Google Scholar 

  12. Min, G., Rowe, D. M.: Cooling performance of integrated thermoelectric microcooler. Solid-State Electronics 43, 923–929 (1999)

    Article  Google Scholar 

  13. Glatz, W., Muntwyler, S., Hierold, C.: Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sensors and Actuators A: Physical 132, 337–345 (2006)

    Article  Google Scholar 

  14. Cheng, Y. H., Lin, W. K.: Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms. Applied Thermal Engineering 25, 2983–2997 (2005)

    Article  Google Scholar 

  15. Hori, Y., Kusano, D., Ito, T., et al.: Analysis on thermomechanical stress of thermoelectric module. In: Proceedings of the 18th International Conference on Thermoelectrics. Baltimor, USA (1999)

  16. Huang, M. J., Yen, R. H., Wang, A. B.: The influence of the Thomson effect on the performance of a thermoelectric cooler. International Journal of Heat and Mass Transfer 48, 413–418 (2005)

    Article  MATH  Google Scholar 

  17. Huang, M. J., Chou, P. K., Lin, M. C.: Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect. Sensors and Actuators A: Physical 126, 122–128 (2006)

    Article  Google Scholar 

  18. Townsend, P. H., Barnett, D. M., Brunner, T. A.: Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate. Journal of Applied Physics 62, 4438–4444 (1987)

    Article  Google Scholar 

  19. Chen, X., Liu, Y.: Thermal stress analysis of multi-layer thin films and coatings by an advanced boundary element method. CMES-Computer Modeling in Engineering and Sciences 2, 337–349 (2001)

    MATH  Google Scholar 

  20. Hsueh, C. H.: Modeling of elastic deformation of multilayers due to residual stresses and external bending. Journal of Applied Physics 91, 9652–9656 (2002)

    Article  Google Scholar 

  21. Hsueh, C. H.: Thermal stresses in elastic multilayer systems. Thin Solid Films 418, 182–188 (2002)

    Article  Google Scholar 

  22. Hsueh, H. C., Chiang, D., Lee, S.: Modeling of relaxation of viscoelastic stresses in multi-layered thin films/substrate systems due to thermal mismatch. Thin Solid Films 518, 7497–7500 (2010)

    Article  Google Scholar 

  23. Feng, X., Huang, Y., Rosakis, A.: Stresses in a multilayer thin film/substrate system subjected to nonuniform temperature. Journal of Applied Mechanics 75, 021022 (2008)

    Article  Google Scholar 

  24. Ngo, D., Huang, Y., Feng, X., et al.: Multilayer thin films/substrate system with variable film thickness subjected to non-uniform misfit strains. Acta Materialia 56, 5322–5328 (2008)

    Article  Google Scholar 

  25. Wang, J.: Strain tunability of dielectric and ferroelectric properties in epitaxial lead titanate thin films. Theoretical & Applied Mechanics Letters 1, 011003 (2011)

    Article  Google Scholar 

  26. Zhang, N. H.: Thermoelastic stresses in multilayered beams. Thin Solid Films 515, 8402–8406 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Zhe Wang.

Additional information

The project was supported by the National Basic Research Program of China (2007CB607506), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (111005) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (11121202).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YM., Wang, XZ. & Zhang, WJ. Thermoelastic stress analysis of multilayered films in a micro-thermoelectric cooling device. Acta Mech Sin 28, 1644–1650 (2012). https://doi.org/10.1007/s10409-012-0207-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0207-3

Keywords

Navigation