Skip to main content
Log in

A 3D shell-like approach using element-free Galerkin method for analysis of thin and thick plate structures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only displacement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics 12, A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  2. Sze, K.Y., Yao, L.Q.: Modeling smart structures with segmented piezoelectric sensors and actuators. Journal of Sound and Vibration 235, 495–520 (2000)

    Article  Google Scholar 

  3. Sze, K.Y., Lo, S.H., Yao, L.Q.: Hybrid-stress solid element for shell structures based upon a modified variational functional. International Journal for Numeric Methods in Engineering 53, 2617–2642 (2002)

    Article  MATH  Google Scholar 

  4. Hein, P.: Diffuse element method applied to Kirchhoff plates. Department of Civil Engineering, Technical report, Northwestern University, Evanston, 11 (1993)

    Google Scholar 

  5. Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Computational Mechanics 17, 26–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Krysl, P., Belytschko, T.: Analysis of thin shells by the element-free Galerkin method. International Journal of Solid and Structures 33, 3057–3080 (1996)

    Article  MATH  Google Scholar 

  7. Garcia, O., Fancello, E.A., de Barcellos, C.S., et al.: Hp-Clouds in Mindlin’s thick plate model. International Journal for Numeric Methods in Engineering 47, 1381–1400 (2000)

    Article  MATH  Google Scholar 

  8. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computationalmechanics. Computational Mechanics 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atluri, S.N., Shen, S.: The meshless local Petrov-Galerkin (MLPG) method: A simple & lesscostly alternative to the finite element and boundary element methods. Computer Modeling in Engineering & Sciences 3, 11–51 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Atluri, S.N.: The Meshless Method (MLPG) for Domain and BIE Discretizations. Tech Science Press, USA (2004)

    Google Scholar 

  11. Noguch, H., Kawashima, T., Miyamura, T.: Element-free analysis of shell and spatial structures. International Journal for Numeric Methods in Engineering 47, 215–1240 (2000)

    Google Scholar 

  12. Kanok-Nukuchai, W., Barryl, W., Saran-Yasoontorn, K., et al.: On elimination of shear locking in the element-free Galerkin method. International Journal for Numeric Methods in Engineering 52, 705–725 (2001)

    Article  Google Scholar 

  13. Dolbow, J., Belytschko, T.: Volumetric locking in the element free Galerkin method. International Journal for Numeric Methods in Engineering 46, 925–942 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolbow, J., Belytschko, T.: An introduction to programming the meshless element free Galerkin method. Archives of Computational Methods in Engineering 5, 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  15. Hauptmann, R., Schweizerhof, K.: A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom. International Journal for Numeric Methods in Engineering 42, 49–69 (1981)

    Article  Google Scholar 

  16. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2rd edn). CRC, Boca Raton (2004)

    MATH  Google Scholar 

  17. Yin, Y., Cao, Y., Yao, L.Q.: A new meshless method based on 2D-EFG for the analysis of piezoelectric laminated Timoshenko beam. SPAWDA 2011: In: Proceedings of the 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, Shenzhen, December 9–11 (2011)

  18. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics 10, 307–318 (1992)

    Article  MATH  Google Scholar 

  19. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Mathematics of Computation 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. International Journal for Numeric Methods in Engineering 36, 229–56 (1994)

    Article  MathSciNet  Google Scholar 

  21. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, Netherland (2005)

    Google Scholar 

  22. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, (3rd edn). McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  23. Li, Q., Soric, J., Jarak, T., et al.: A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates. Journal of Computational Physics 208, 116–133 (2005)

    Article  MATH  Google Scholar 

  24. Sze,, K.Y., Yao, L.Q., Pian, T.H.H.: An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures. Finite Elements in Analysis and Design 38, 353–374 (2002)

    Article  MATH  Google Scholar 

  25. Qian, W.C., Ru, X.P.: A further study of the theory of elastic circular plates with non-Kirchhoff-Love assumptions. Applied Mathematics and Mechanics 16, 95–105 (1995)

    Google Scholar 

  26. Qian, W.C., Sheng, S.Z.: The first-order approximation of non-Kirchhoff-Love theory of elastic circular plate with fixed boundar under uniform surface loading (III)—numeric results. Applied Mathematics and Mechanics 18, 385–393 (1997)

    Article  Google Scholar 

  27. McPherson, A., Ramberg, W., Levy, S.: Normal-pressure tests of circular plates with cahamped edges. Report No. 744, National Advisory Committee for Aeronautics (1942)

  28. Srinivas, S., Rao, A.K.: Flexure of thick rectangular plates. Journal of Applied Mechanics 40, 298–299 (1973)

    Article  Google Scholar 

  29. Senthilnathan, N.R.: A simple higher-order shear deformation plate theory. [Ph.D. Thesis]. The National University of Singapore, Singapore (1989)

    Google Scholar 

  30. Xu, Q.L.: New solution of rectangular plate with one edge built in subjected to uniform load. Journal of Zhengzhou Institute of Technology 17, 42–47 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Quan Yao.

Additional information

The project was supported by the National Natural Science Foundation of China (11172192), the College Postgraduate Research and Innovation Project of Jiangsu province (CXZZ12 0803).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Yao, LQ. & Cao, Y. A 3D shell-like approach using element-free Galerkin method for analysis of thin and thick plate structures. Acta Mech Sin 29, 85–98 (2013). https://doi.org/10.1007/s10409-012-0159-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0159-7

Keywords

Navigation