Skip to main content
Log in

Interlayer shear strength of single crystalline graphite

  • Rapid Communication
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Reported values (0.2 MPa–7.0 GPa) of the interlayer shear strength (ISS) of graphite are very dispersed. The main challenge to obtain a reliable value of the ISS using conventional measuring methods was the unavailability of sufficiently large single crystalline graphite. Here we present a novel experimental method to measure the ISS, and obtain the value as ∼0.14 GPa. Our result can serve as an important basis for understanding mechanical behavior of graphite or graphene-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Kelly, B. T.: Physics of Graphite, Applied Science, London (1981)

    Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981)

    Article  Google Scholar 

  3. Stankovich, S., Dikin, D., Dommett, G., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  4. Dikin, D. A., Stankovich, S., Zimney, E. J., et al.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  Google Scholar 

  5. Liu, Y., Xie, B, Zheng, Q. S., et al.: Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591–605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Novoselov, K. S., Geim, A. K., Morozov, S. V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  7. Novoselov, K. S., Geim, A. K., Morozov, S. V., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  8. Savini, G., Dappe, Y. J., Oberg, S., et al.: Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49, 62–69 (2011)

    Article  Google Scholar 

  9. Bosak, A., Krisch, M., Mohr, M., et al.: Elasticity of single-crystalline graphite: Inelastic x-ray scattering study. Phys. Rev. B 75, 153408 (2007)

    Article  Google Scholar 

  10. Soule, D. E., Nezbeda, C. W.: Direct basal-plane shear in single-crystal graphite. J. Appl. Phys. 39, 5122–5139 (1968)

    Article  Google Scholar 

  11. Zheng, Q. S., Jiang, B., Liu, S. P., et al.: Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008)

    Article  Google Scholar 

  12. Liu, Z., Yang, J. R., Francois, G., et al.: Observation of MicroscaleSuperlubricity in Graphite. Phys. Rev. Lett. 108, 205503 (2012)

    Article  Google Scholar 

  13. Yu, M. F., Yakobson, B. I., Ruoff, R. S.: Controlled sliding and pullout of nested shells in individual multiwalledcarbo nanotubes. J. Phys. Chem. B 104, 8764–8767 (2000)

    Article  Google Scholar 

  14. Bourlon, B., Glattli, D. C., Miko, C., et al.: Carbon nanotube based bearing for rotational motions. Nano Lett. 4, 709–712 (2004)

    Article  Google Scholar 

  15. Liu, Z., Zheng, Q. S., Liu, J. Z.: Stripe/kink microstructures formed in mechanical peeling of highly orientated pyrolytic graphite. Appl. Phys. Lett. 96, 201909 (2010)

    Article  Google Scholar 

  16. Seldin, E. J., Nezbeda, C. W.: Elastic constants and electron-microscope observations of neutron-irradiated compression-annealed pyrolytic and single-crystal graphite. J. Appl. Phys. 41, 3389–3400 (1970)

    Article  Google Scholar 

  17. Blakslee, O. L, Proctor, D. G., Seldin, E. J.: Elastic constants of compression]annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)

    Article  Google Scholar 

  18. Popov, A. M., Lozovik, Y. E., Krivorotov, E. K.: Can barrier to relative sliding of carbon nanotube walls be measured? Comp. Mate. Sci. 53, 67–74 (2012)

    Article  Google Scholar 

  19. Park, S. Y., Floresca, H. C., Suh, Y. J., et al.: Electron microscopy analyses of natural and highly oriented pyrolyticgraphites and the mechanically exfoliated graphenes produced from them. Carbon. 48, 797–804 (2010)

    Article  Google Scholar 

  20. Ding, X. D., Wang, Y. Z., Xiong, X. M., et al.: Measurement of shear strength for HOPG with scanning tunneling microscopy by thermal excitation method. Ultramicroscopy 115, 1–6 (2011)

    Article  Google Scholar 

  21. Snyder, S. R., Gerberich, W. W., White, H. S.: Scanning-tunneling-microscopy study of tip-induced transitions of dislocation-network structures on the surface of highly oriented pyrolytic graphite. Phys. Rev. B 47, 10823 (1993)

    Article  Google Scholar 

  22. Bonelli, F., Manini, N., Cadelano, E., et al.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70, 449–459 (2009)

    Article  Google Scholar 

  23. Guo, Y. F., Guo, W. L., Chen, C. F.: Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study. Phys. Rev. B 76, 155429 (2007)

    Article  Google Scholar 

  24. Spanu, L., Sorella, S., Galli, G.: Nature and strength of interlayer binding in graphite. Phys. Rev. Lett. 103, 196401 (2009)

    Article  Google Scholar 

  25. Lebegue, S., Harl J., Gould, T., et al.: Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. Phys. Rev. Lett. 105, 196401 (2010)

    Article  Google Scholar 

  26. Liu, Z., Liu, J. Z., Cheng, Y., et al.: Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys. Rev. B 85, 205418 (2012)

    Article  Google Scholar 

  27. Lu, X. K., Yu, M. F., Huang, H., et al.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999)

    Article  Google Scholar 

  28. Zacharia, R., Ulbricht, H., Hertel, T.: Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004)

    Article  Google Scholar 

  29. Renault, P. O., Badawi, K. F., Bimbault, L., et al.: Poisson’s ratio measurement in tungsten thin films combining an x-ray diffractometer with in situ tensile tester. Appl. Phys. Lett. 73, 1952 (1998)

    Article  Google Scholar 

  30. Dienwiebel, M., Pradeep, N., Verhoeven, G. S., et al.: Model experiments of superlubricity of graphite. Surf. Sci. 576, 197–211 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Shui Zheng.

Additional information

The project was supported by the National Natural Science Foundation of China(10832005) and the National Basic Research Program of China (2007CB936803).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zhang, SM., Yang, JR. et al. Interlayer shear strength of single crystalline graphite. Acta Mech Sin 28, 978–982 (2012). https://doi.org/10.1007/s10409-012-0137-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0137-0

Keywords

Navigation