Skip to main content
Log in

Aircraft noise and its nearfield propagation computations

  • Review Article
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and radiation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hubbard, H. H.: Aeroacoustics of Flight Vehicles, Theory and Practice, Volume 1: Noise Sources, Acoustical Society of America (1995)

  2. Westley, R., Lilley, G. M.: An investigation of the noise field from a small jet and methods for its reduction, Report 53, The College of Aeronautics, Cranfield, January (1952)

  3. European Aeronautics: A Vison for 2020. Advisory Council for Aeronautics Research in Europe (ACARE) (2001)

  4. Flightpath 2050 Europe’s Vision for Aviation: Report of the High Level Group on Aviation Research. European Commis sion (2011)

  5. Annex 16 to the Convention on International Civil Aviation, Environmental Protection, Volume 1 Aircraft Noise. International Civil Aviation Organization, July (2008)

  6. Chow, L., Mau, K., Remy, H.: Landing gears and high lift devices airframe noise research. AIAA Paper 2002-2408 (2002)

  7. Dobrzynski, W. M.: Airframe noise: landing gear noise. Encyclopedia of Aerospace Engineering Vol. 6, 3529–3539 (2008)

    Google Scholar 

  8. Zhang, X.: Airframe noise: high lift device noise. Encyclopedia of Aerospace Engineering Vol. 6, 3541–3551 (2008)

    Google Scholar 

  9. Astley, R. J.: Propulsion system noise: turbomachinery. Encyclopedia of Aerospace Engineering Vol. 6, 3509–3520 (2010)

    Google Scholar 

  10. Bailey, C., Bogey, C.: Propulsion system noise: jet. Encyclopedia of Aerospace Engineering Vol. 6, 3522–3528 (2010)

    Google Scholar 

  11. Raman, G.: Jet Aeroacoustics, Multi-Science Publishing Co. Ltd (2008)

  12. Self, R. H.: Propeller noise. Encyclopedia of Aerospace Engineering Vol. 6, 3553–3563 (2010)

    Google Scholar 

  13. Astley, R. J.: Numerical methods for noise propagation in moving flows, with application to turbofan engines. Acoust. Sci. Tech. 30, 227–239 (2009)

    Article  Google Scholar 

  14. Dobrzynski, W.: Almost 40 years of airframe noise research: what did we achieve. Journal of Aircraft 47, 353–367 (2010)

    Article  Google Scholar 

  15. Redonnet, S., Mincu, C. D., Manoha, E.: Computational aeroacoustics of realistic co-axial engines. AIAA Paper 2008-2826, 2008

  16. Drazin, P. G., Reid, W. H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  17. Rienstra, S. W., Hirschberg, A.: An Introduction to Acoustics, Eindhoven University of Technology, Netherlands, April (2011)

    Google Scholar 

  18. Zhang, X., Chen, X. X.: Linearised divergence equations for sound propagation. AIAA Paper 2011-2930 (2011)

  19. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188, 365–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ewert, R., Schröder, W.: On the simulation of trailing edge noise wkth a hybrid LES/APE method. Journal of Sound and Vibration 270, 509–524 (2004)

    Article  Google Scholar 

  21. Ffowcs Williams, J. E., Hawkings, D. L.: Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transcations of the Royal Society of London A264, 321–342 (1969)

    Google Scholar 

  22. Farassat, F., Succi, G. P.: The prediction of helicopter discrete frequency noise. Vertica 7, 309–320 (1983)

    Google Scholar 

  23. Tam, C. K. W., Webb, J. C.: Dispersion relation preserving finite difference schemes for computational acoustics. Journal of Computational Physics 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hixon, R.: Prefactored small-stencil compact schemes. Journal of Computational Physics 165, 522–541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ashcroft, G., Zhang, X.: Optimized prefactored compact schemes. Journal of Computational Physics 190, 459–477 (2003)

    Article  MATH  Google Scholar 

  26. Mechel, F. P.: Formulas of Acoustics, Springer, New York (2008)

    Book  Google Scholar 

  27. Campos, L. M. B. C.: On 36 forms of the acoustic wave equation in potential flows and inhomogeneous media. Applied Mechanics Review, Transactions of the ASME 60, 149–171 (2007)

    Article  MathSciNet  Google Scholar 

  28. Campos, L. B. C.: On 24 forms of the acoustic wave equation in vortical flows and dissipative media. Applied Mechanics Review, Transactions of the ASME 60, 292–315 (2007)

    Google Scholar 

  29. Becker, A.: The Boundary Element Method in Engineering: A Completed Course, McGraw-Hill, London (1992)

    Google Scholar 

  30. Ciskowski, R. D., Brebbia, C. A.: Boundary Element Methods in Acoustics, Computational Mechanics Publications, London (1991)

    MATH  Google Scholar 

  31. Lidoine, S., Batard, S., Troyes, H., et al.: Acoustic radiation modelling of aeroengine intake comparison between analytical and numercial methods. AIAA Paper 2001-2140 (2001)

  32. Redonnet, S., Parzani, C., Manoha, E., et al.: Numerical study of 3D acoustic installation effects through a hybrid Euler/BEM method. AIAA Paper 2007-3500 (2007)

  33. Eversman, W.: Mapped infinite wave envelope elements for acoustic radiation in a uniformly moving medium. Journal of Sound and Vibration 224, 665–687 (1999)

    Article  Google Scholar 

  34. Astley, R. J., Hamilton, J., Baker, N., et al.: Modeling tone propagation from turbofan inlets — the effect of extended lip linears. AIAA 2002-2449 (2002)

  35. Redonnet, S., Parzani, C., Manoha, E., et al.: Numerical study of 3d acoustic installation effects through a hybrid euler/BEM method. AIAA Paper 2007-3500 (2007)

  36. Pepper, D. W., Heinrich, J. C.: The Finite Element Method: Basic Concepts and Applications, Hemisphere Publishing Corporation, New York (1992)

    Google Scholar 

  37. Eversman, W., Obuknor, D.: Aircraft fan duct radiation. Journal of Sound and Vibration 213, 235–257 (1998)

    Article  Google Scholar 

  38. Van Antwerpen, B., Leneveu, R., Caro, S.: New advances in the use of ACTRAN/TM for nacelle simulations. AIAA Paper 2008-2827, (2008)

  39. Gabard, G., Astley, R. J., Tahar, M. B.: Stability and accuracy of finite element methods for flow acoustics: I. general theory and application to one-dimensional propagation. International Journal of Numerical Mathematics and Engineering 63, 947–973 (2005)

    Article  MATH  Google Scholar 

  40. Casalino, D.: Finite element solutions of a wave equation for sound propagation in sheared flows. AIAA Journal 50, 37–45 (2012)

    Article  Google Scholar 

  41. Bassi, F., Rebay, S.: High order accurate discontinuous finite element solution of the 2D Euler equations. Journal of Computational Physics 138, 251–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Atkins, H. L., Shu, C. W.: Quadrature free implementation of discontinuous Galerkin method for hyperbolic equations. AIAA Journal 36, 775–785 (1998)

    Article  Google Scholar 

  43. Stanescu, D., Hussaini, M. Y., Farassat, F.: Aircraft engine noise scattering — a discontinuous spectral element approach. AIAA Paper 2002-0800 (2002)

  44. Rao, P. P., Morris, P. J.: Application of a generalized quadrature free discontinuous Galerkin method in aeroacoustics. AIAA Paper 2003-3120 (2003)

  45. Özyörük, Y., L, Long, L.: C: Computation of sound radiation from engine inlet. AIAA Journal 34, 894–901 (1996)

    Article  MATH  Google Scholar 

  46. Ahuja, V., Ozyoru, Y., Long, L.: Computational simulations of fore and aft radiation from ducted fans. AIAA Paper 2000-1943 (2000)

  47. Redonnet, S.: On the numerical prediction of aerodynamic noise via a hybrid approach. AIAA Paper 2010-3709 (2010)

  48. Redonnet, S., Desquesnes, G., Manoha, E.: Numerical study of acoustic installation effects with a computational aeroacoustics method. AIAA Journal 48, 929–937 (2010)

    Article  Google Scholar 

  49. Redonnet, S., Mincu, C., Delattre, G.: Computational aeroacoustics of a realistic co-axial engine, possibly equipped with acoustic liners. AIAA Paper 2010-3717 (2010)

  50. Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA CP 2004-212954 (2003)

  51. Workshop on Benchmark Problems for Airframe Noise Computations — I, Stockholm, Sweden, June 10–11 (2010)

  52. Workshop on Benchmark Problems for Airframe Noise Computations — II, Colorado Springs, Colorado, USA, June 7–8 (2012)

  53. Homicz, G., Lordi, J.: A note on the radiative directivity patterns of duct acoustic modes. Journal of Sound and Vibration 41, 283–290 (1975)

    Article  Google Scholar 

  54. Munt, R.: The interaction of sound with a subsonic jet issuing from a semi-infinite cylindrical pipe. Journal of Fluid Mechanics 83, 609–640 (1977)

    Article  MathSciNet  Google Scholar 

  55. Gabard, G., Astley, R. J.: Theoretical model for sound radiation from annular jet pipes: dar- and near-field solutions. Journal of Fluid Mechanics 549, 315–341 (2006)

    Article  MathSciNet  Google Scholar 

  56. Arnold, F., Tapken, U., Bauers, R., et al.: Turbomachinery exhaust noise radiation experiments—Part 1: polar directivity measurements. AIAA Paper 2008-2857 (2008)

  57. Tapken, U., Bauers, R., Arnold, F., et al.: Turbomachinery exhaust noise radiation experiments—Part 2: in-duct and far-field mode analysis. AIAA Paper 2008-2858 (2008)

  58. Chu, B. T., Kovasznay, L. S.: Non-linear interactiosn in a viscous heat-conducting compressible gas. Journal of Fluid Mechanics 3, 494–514 (1958)

    Article  MathSciNet  Google Scholar 

  59. Zhang, X., Chen, X. X., Morfey, C., et al.: Computation of spinning modal radiation from An unflanged duct. AIAA Journal 42, 1795–1801 (2004)

    Article  Google Scholar 

  60. Li, X. D., Gao, J. H., Eschricht, D., et al.: Numerical computation of the radiation and refraction of sound waves through a two-dimensional shear layer. Fourth Computational Aeroaocoustic (CAA)Workshops on Benchmark Problems, NASA CP 2004-212954 (2004)

  61. Zhang, X., Chen, X. X.: Linearised divergence equations for sound propagation. AIAA Paper 2011-2930 (2011)

  62. Zhang, X., Chen, X. X.: Time-domainc computation of multimode propagation in an aero-engine duct. Procedia Engineering 6, 173–182 (2010)

    Article  Google Scholar 

  63. Tam, C. K. W., Aurialt, L.: Mean flow refraction effects on sound radiation from localized sources in a jet. J. Fluid Mech. 370, 149–174 (1998)

    Article  MATH  Google Scholar 

  64. Karabasov, S. A., Hynes, T. P.: An efficient frequency-domain algorithm for wave scattering problems with application to jet noise. AIAA Paper 2005-2827 (2005)

  65. Karabasov, S. A., Hynes, T. P.: Adjoint linearized Euler solver in the frequency domain for jet noise. AIAA Paper 2006-2673 (2006)

  66. Wang, X.: Computational aeroacoustics of slat track noise. [Ph.D. Thesis] University of Southampton, Southampton, UK, (2012)

    Google Scholar 

  67. Pierce, A.: Wave equation for sound in fluids with unsteady inhomogeneous. Journal of Acoustical Society of America 87, 2292–2299 (1990)

    Article  Google Scholar 

  68. Agarwal, A., Morris, P. J., Mani, R.: The calculation of sound propagation in nonuniform flows: suppression of instability waves. AIAA Journal 42, 80–88 (2004)

    Article  Google Scholar 

  69. Özyörük, Y., T, Tester, B. J. J.: Application of frequency-domain linearised Euler solutions to the prediction of Aft fan tones and comparison with experimental measurements on model scale turbofan nozzles. Journal of Sound and Vibration 330, 2846–3858 (2011)

    Article  Google Scholar 

  70. Özyörük, Y., L, Long, L. N. N., Jones, M. G.: Time-domain numerical simulation of a flow-impedance tube. Journal of Computational Physics 146, 29–57 (1998)

    Article  MATH  Google Scholar 

  71. Eversman, W.: The boundary conditions at an impedance wall in a non-uniform duct with potential mean flow. Journal of Sound and Vibration 246, 63–69 (2001)

    Article  Google Scholar 

  72. Tam, C. K. W., Auriault, L.: Time-domain impedance boundary condistions for computational aeroacoustics. AIAA Journal 34, 917–923 (1996)

    Article  MATH  Google Scholar 

  73. Fung, K. Y., Ju, H. B.: Broadband time-domain impedance models. AIAA Journal 39, 1449–1454 (2001)

    Article  Google Scholar 

  74. Fung, K. Y., Ju, H., Tallapragada, B.: Impedance and its timedomain extensions. AIAA Journal 38, 30–38 (2000)

    Article  Google Scholar 

  75. Özyörük, Y., Long, L. N.: A time-domain implementation of surface acoustic impedance condition with and without flow. Journal of Computational Acoustics 5, 277–296 (1997)

    Article  Google Scholar 

  76. Fung, K. Y., Ju, H.: Time domain impedance boundary conditions for computational acoustics and aeroacoustics. International Journal of Computational Fluid Dynamics 18, 503–511 (2004)

    Article  MATH  Google Scholar 

  77. Ma, Z. K., Zhang, X.: Numerical investigation of broadband slat noise attenuation with acoustic liner treatment. AIAA Journal 47, 2812–2820 (2009)

    Article  Google Scholar 

  78. Ma, Z. K., Smith, M. G., Richards, S. K., et al.: Attenuation of slat trailing edge noise using acoustic liners. International Journal of Aeroacoustics 5, 311–333 (2006)

    Article  Google Scholar 

  79. Overden, N. C., Rienstra, S. W.: Mode-matching strategies in slowly varying engine ducts. AIAA Paper 2003-3139 (2003)

  80. Wasistho, B., Guerts, B. J., Kuerten, J. G. M.: Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate. Computere and Fluids 7, 713–739 (1997)

    Article  Google Scholar 

  81. Collis, S. S., Lele, S. K.: A computational approach to swept leading-edge receptivity. AIAA Paper 1996-0180 (1996)

  82. Freund, J. B.: Proposed inflow/outflow boundary conditions for computation of aerodynamic sound. AIAA Journal 35, 740–742 (1997)

    Article  MATH  Google Scholar 

  83. Thompson, K. W.: Time-dependent boundary conditions for hyperbolic systems, II. Journal of Computational Physics 89, 439–461 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hu, F. G.: On constructing stable perfectly matched layers as an absorbing boundary condition for euler equations. AIAA Paper 2002-0227 (2002)

  85. Richards, S. K., Zhang, X., Nelson, P. A.: The evaluation of a buffer zone as an inflow/outflow boundary condition for computational aeroacoustic applications. Journal of Sound and Vibration 270, 539–557 (2004)

    Article  Google Scholar 

  86. Brentner, K. S., Farassat, F.: An analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA Journal 36, 1379–1386 (1998)

    Article  Google Scholar 

  87. Choudhari, M. M., Khorrami, M. R.: Effect of threedimensional shear-layer structures on slat cove unsteadiness. AIAA Journal 45, 2174–2186 (2007)

    Article  Google Scholar 

  88. Molin, N., Roger, M.: Low-frequency noise sources in twodimensional high-lift devices. AIAA Paper 2000-2064 (2000)

  89. Smith, M. G., Chow, L. C.: Validation of a prediction model for aerodynamic noise from aircraft landing gears. AIAA Paper 2002-2581 (2002)

  90. Guo, Y.: A statistical model for landing gear noise prediction. AIAA Paper 2003-3227 (2003)

  91. Guo, Y. P., Yamamoto, K. J., Stoker, R. W.: An empirical model for landing gear noise prediction. AIAA Paper 2004-2888 (2004)

  92. Angland, D.: Landing gear installation effect Airbus Aircraft Noise Technology Center Technical Report 2012–03. University of Southampton, Southampton, UK, July 2012

    Google Scholar 

  93. Richasrds, S., Chen, X. X., Zhang, X.: Parallel computation of 3d acoustic radiation from an engine intake. AIAA Paper 2005-2947 (2005)

  94. Huang, X., Zhang, X., Richards, S. K.: Adaptive mesh refinement computation of acoustic radiation from an engine Intake. Aerospace Sciences and Technology 12, 418–426 (2008)

    Article  Google Scholar 

  95. Huang, X., Chen, X. X., Ma, Z. K., et al.: Efficient computation of spinning modal radiation through an engine bypass duct. AIAA Journal 46, 1413–1423 (2008)

    Article  Google Scholar 

  96. Richards, S. K., Chen, X. X., Huang, X., et al.: Computation of fan noise radiation through an engine exhaust geometry with flow. International Journal of Aeroacoustics 6, 223–241 (2007)

    Article  Google Scholar 

  97. Chen, X. X., Huang, X., Zhang, X.: Sound radiation from a bypass duct with bifurcations. AIAA J 47, 429–436 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. Aircraft noise and its nearfield propagation computations. Acta Mech Sin 28, 960–977 (2012). https://doi.org/10.1007/s10409-012-0136-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0136-1

Keywords

Navigation