Skip to main content
Log in

Crack buckling in soft gels under compression

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping. In this paper, we study a possible fracture mechanism of soft gels under uni-axial compression. We show that the surfaces of a pre-existing crack, oriented parallel to the loading axis, can buckle at a critical compressive stress. This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip, which can lead to crack growth. We show that the onset of crack buckling can be deduced by a dimensional argument combined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space. The critical compression for buckling was verified for a neo-Hookean material model using finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drury, J. L., Mooney, D. J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003)

    Article  Google Scholar 

  2. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 53, 321–339 (2001)

    Article  Google Scholar 

  3. Chaterji, S., Kwon, I. K., Park, K.: Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci. 32, 1083–1122 (2007)

    Article  Google Scholar 

  4. Calvert, P.: Hydrogels for soft machines. Adv. Mater. 21, 743–756 (2009)

    Article  Google Scholar 

  5. Chen, Y. M., Gong, J. P., Osada, Y.: Gel: a potential material as artifical soft tissue. Macromol. Eng. 4, 2689–2717 (2007)

    Google Scholar 

  6. Peretti, G., M., Xu, J., Bonassar, L. J., et al.: Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng. 12, 1151–1168 (2006)

    Article  Google Scholar 

  7. Beebe, D. J., Moore, J. S., Bauer, J. M., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)

    Article  Google Scholar 

  8. Dong, L., Jiang, H.: Autonomous microfluidics with stimuliresponsive hydrogels. Soft Matter 3, 1223–1230 (2007)

    Article  Google Scholar 

  9. Li, Y., Tanaka, T.: Phase-transitions of gels. Annu. Rev. Mater. Sci. 22, 243–277 (1992)

    Article  Google Scholar 

  10. Osada, Y., Gong, J. P.: Soft and wet materials: Polymer gels. Adv. Mater. 10, 827–837 (1998)

    Article  Google Scholar 

  11. Gong, J. P., Katsuyama, Y., Kurokawa, T., et al.: Doublenetwork hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

    Article  Google Scholar 

  12. Kong, H., Wong, E., Mooney, D.: Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules 36, 4582–2588 (2003)

    Article  Google Scholar 

  13. Kushner, A. M., Vossler, J. D., Williams, G. A., et al.: A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc. 131, 8766–8768 (2009)

    Article  Google Scholar 

  14. Henderson, K. J., Zhou, T. C., Otim, K. J., et al.: Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43, 6193–6201 (2010)

    Article  Google Scholar 

  15. Krishnan, V. R., Hui, C. Y., Long, R.: Finite strain crack tip fields in soft incompressible elastic solids. Langmuir 24, 14245–14253 (2008)

    Article  Google Scholar 

  16. Long R., Krishnan, V. R., Hui, C. Y.: Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress. J. Mech. Phys. Solids 59, 672–695 (2011)

    Article  MathSciNet  Google Scholar 

  17. Baumberger, T., Caroli, C., Martina, D., Solvent control of crack dynamics in a reversible hydrogel. Nat. Mater. 5, 552–555 (2006)

    Article  Google Scholar 

  18. Seitz, M. E., Martina, D., Baumberger, T., et al.: Fracture and large strain behavior of self-assembled triblock copolymer gels. Soft Matter 5, 447–456 (2009)

    Article  Google Scholar 

  19. Livne, A., Bouchbinder, E., Svetlizky, I., et al.: The near-tip fields of fast cracks, Science. 327, 1359–1363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cai, S., Hu, Y., Zhao, X., et al.: Poroelasticity of a covalently crosslinked alginate hydrogel under compression. J. Appl. Phys. 108, 113514 (2010)

    Article  Google Scholar 

  21. Wu, C. H.: Plane-strain buckling of cracks in incompressible elastic solids. J. Elasticity 10, 163–177 (1980)

    Article  MathSciNet  Google Scholar 

  22. Biot, M. A.: Surface instability of rubber in compression. Appl. Sci. Res. A 12, 168–182 (1963)

    MATH  Google Scholar 

  23. Usmani, S. A., Beatty, M. F.: On the surface instability of a highly elastic half-space. J. Elasticity 4, 249–263 (1974)

    Article  Google Scholar 

  24. Best, B., Meijers, P., Savkoor, A. R.: The formation of Schallamach waves. Wear 65, 385–396 (1981)

    Article  Google Scholar 

  25. Nowinski, J. L.: Surface instability of a half-space under twodimensional compression. J. Franklin Inst. 288, 367–376 (1969)

    Article  MATH  Google Scholar 

  26. Coleman, B. D., Noll, W.: On the thermostatics of continuous media. Arch. Rational Mech. Anal. 4, 97–128 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stephenson, R. A.: The equilibrium field near the tip of crack for finite plane strain of incompressible elastic materials. J. Elasticity 12, 65–99, (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krishnan, V. R., Hui, C. Y.: Finite strain stress fields near the tip of an interface crack between a soft incompressible elastic material and a rigid substrate. Eur. Phys. J. E 29, 61–72, (2009)

    Article  Google Scholar 

  29. Eshelby, J. D.: The energy momentum tensor in continuum mechanics. Kanninen, M. F. et al., eds. Inelastic Behavior of Solids, McGraw-Hill, New York (1970)

    Google Scholar 

  30. Cottrell, B., Rice, J. R.: Slightly curved or kinked cracks. Int. J. Frac. 16, 155–169 (1980)

    Article  Google Scholar 

  31. Hong, W., Zhao, X., Suo, Z.: Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95, 111901 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Yuen Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, R., Hui, CY. Crack buckling in soft gels under compression. Acta Mech Sin 28, 1098–1105 (2012). https://doi.org/10.1007/s10409-012-0130-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0130-7

Keywords

Navigation