Skip to main content
Log in

Unconventional phase field simulations of transforming materials with evolving microstructures

  • Review Article
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures. This approach is advantageous in its explicit material symmetry and energy well structure, minimal number of material coefficients, and easiness in coupling multiple physical processes and order parameters, and has been applied successfully to study the microstructures and macroscopic properties of shape memory alloys, ferroelectrics, ferromagnetic shape memory alloys, and multiferroic magnetoelectric crystals and films with increased complexity. In this topical review, the formulation of this unconventional phase field approach will be introduced in details, and its applications to various transforming materials will be discussed. Some examples of specific microstructures will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Univ. Press, Oxford (2003)

    MATH  Google Scholar 

  2. Bhattacharya, K., James, R. D.: The material is the machine. Science 307, 53–54 (2005)

    Article  Google Scholar 

  3. Lagoudas, D. C.: Shape Memory Alloys, Modeling and Engineering Applications, Springer, New York (2008)

    MATH  Google Scholar 

  4. Nelson, C. T., Winchester, B., Zhang, Y., et al.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Letters 11, 828–834 (2011)

    Article  Google Scholar 

  5. Barman, S. R., Chakrabarti, A., Singh, S., et al.: Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga2MnNi. Physical Review B 78, 134406 (2008)

    Article  Google Scholar 

  6. Tani, Y., Todaka. T., Enokizono, M.: Development of an engineering model for ferromagnetic shape memory alloys. Journal of Magnetism and Magnetic Materials 320, e743–e745 (2008)

    Article  Google Scholar 

  7. Marionia, M. A., OHandleyb, R. C., Allenb, S. M., et al.: The ferromagnetic shape-memory effect in NiMnGa. Journal of Magnetism and Magnetic Materials 290-291, 35–41 (2005)

    Article  Google Scholar 

  8. Oikawa, K., Wulff, L., Iijima, T., et al.: Promising ferromagnetic NiCoAl shape memory alloy system. Applied Physics Letters 79, 3290–3292 (2001)

    Article  Google Scholar 

  9. Pons, J., Cesari, E., Segu, C., et al.: Ferromagnetic shape memory alloys: Alternatives to NiMnGa. Materials Science and Engineering A 481–482, 5765 (2008)

    Google Scholar 

  10. Zhao, T., Scholl, A., Zavaliche, F., et al.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Materials 5, 823–829 (2006)

    Article  Google Scholar 

  11. Chu, Y. H., Martin, L. W., Holcomb, M. B., et al.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Materials 7, 478–482 (2008)

    Article  Google Scholar 

  12. Eerenstein, W., Mathur, N. D., Scott, J. F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  Google Scholar 

  13. Fiebig, M.: Revival of the magnetoelectric effect. Journal of Physics D 38, R123–R152 (2005)

    Article  Google Scholar 

  14. Fiebig, M., Lottermoser, T., Frohlich, D., et al.: Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    Article  Google Scholar 

  15. Lottermoser, T., Lonkai, T., Amann, U., et al.: Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    Article  Google Scholar 

  16. Ramesh, R., Spaldin, N. A.: Multiferroics: progress and prospects in thin films. Nature Materials 6, 21–29 (2007)

    Article  Google Scholar 

  17. Ball, J. M., James, R. D.: Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics and Analysis 100, 13 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J., Liu, D.: On ferroelectric crystals with engineered domain configurations. Journal of the Mechanics and Physics of Solids 52, 1719–1742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tsou, N. T., Huber, J. E.: Compatible domain structures and the poling of single crystal ferroelectrics. Mechanics of Materials 42, 740–753 (2010)

    Article  Google Scholar 

  20. Tsou, N. T., Potnis, P. R., Huber, J. E.: Classification of laminate domain patterns in ferroelectrics. Physical Review B 83, 184120 (2011)

    Article  Google Scholar 

  21. Khachaturyan, A. G.: Theory of Structural Transformations in Solids. Wiley, New York (1983)

    Google Scholar 

  22. Kohn, R. V.: The relaxation of a double-well energy. Continuum Mechanics and Thermodynamics 3, 193–236 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Ball, J. M., James, R. D.: Proposed experimental tests of a theory of fine microstructure and the two well problem. Philosophical Transactions of the Royal Society of London Series A 338, 389–450 (1992)

    Article  MATH  Google Scholar 

  24. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals, Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  25. Ghosez, P., Junquera, P.: First-principles modeling of ferroelectric oxides nanostructures, In: M. Rieth and W. Schommers eds. Handbook Of Theoretical And Computational Nanotechnology, American Scientific Publisher USA (2006)

  26. Zhang, X., Chen, J. S., Osher, S.: A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Interaction and Multiscale Mechanics 1(2), 178–191 (2008)

    Google Scholar 

  27. Ki, Y. T., Goldenfeld, N., Dantzig, J.: Computation of dendritic microstructures using a level set method. Physical Review E 62(2), 2471 (2000)

    Article  Google Scholar 

  28. Hou, T. Y., Rosakis, P., LeFloch, P.: A level-set approach to the computation of twinning and phase-transition dynamics. Journal of Computational Physics 150, 302–331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, L. Q.: Phase-field models for microstructure evolution. Annual Review of Materials Research 32, 113–140 (2002)

    Article  Google Scholar 

  30. Shu, Y. C., Yen, J. H.: Pattern formation in martensitic thin films. Applied Physics Letters 91, 021908 (2007)

    Article  Google Scholar 

  31. Shu, Y. C., Yen, J. H.: Multivariant model of martensitic microstructure in thin films. Acta Materialia 56, 3969–3981 (2008)

    Article  MathSciNet  Google Scholar 

  32. Lei, C. H., Li, L. J., Shu, Y. C., et al.: Austenite-martensite interface in shape memory alloys. Applied Physics Letters 96, 141910 (2010)

    Article  Google Scholar 

  33. Shu, Y. C., Yen, J. H., Chen, H. Z., et al.: Constrained modeling of domain patterns in rhombohedral ferroelectrics. Applied Physics Letters 92, 052909 (2008)

    Article  Google Scholar 

  34. Li, L. J., Li, J. Y., Shu, Y. C., et al.: Magnetoelastic domains and magnetic field-induced strains in ferromagnetic shape memory alloys by phase-field simulation. Applied Physics Letters 92, 172504 (2008)

    Article  Google Scholar 

  35. Li, L. J., Lei, C. H., Shu, Y. C., et al.: Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Materialia 59, 2648–2655 (2011)

    Article  Google Scholar 

  36. Jin, Y. M.: Domain microstructure evolution in magnetic shape memory alloys: Phase-field model and simulation. Acta Materialia 57, 2488–2495 (2009)

    Article  Google Scholar 

  37. Li, L. J., Li, J. Y., Shu, Y. C., et al.: The magnetoelectric domains and cross-field switching in multiferroic BiFeO3. Applied Physics Letters 93, 192506 (2008)

    Article  Google Scholar 

  38. Li, L. J., Yang, Y., Shu, Y. C., et al.: Continuum theory and phase-field simulation of magnet oelectric effects in multiferroic bismuth ferrite. Journal of the Mechanics and Physics of Solids 58, 1613–1627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vasudevan, R. K., Liu, Y. Y., Li, J. Y., et al.: Nanoscale control of phase variants in strain-engineered BiFeO(3). Nano Letters 11, 3346–3354 (2011)

    Article  Google Scholar 

  40. Liu, Y. Y., Vasudevan, R. K., Pan, K., et al.: Controllingmagnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. Nanoscale 4, 3175–3183 (2012)

    Article  Google Scholar 

  41. Ahluwalia, R., Lookman, T., Saxena, A., et al.: Domain-size dependence of piezoelectric properties of ferroelectrics. Physical Review B 72, 014112 (2005)

    Article  Google Scholar 

  42. Cao, W.: Constructing Landau-Ginzburg-Devonshire type models for ferroelectric systems based on symmetry. Ferroelectrics 375, 28–35 (2008)

    Article  Google Scholar 

  43. Marton, P., Rychetsky, I., Hlinka, J.: Domain walls of ferroelectric BaTiO3 within the Ginzburg-Landau-Devonshire phenomenological model. Physics Review B 81, 144125 (2010)

    Article  Google Scholar 

  44. Hu, H. L., Chen, L. Q.: Three-dimensional computer simulation of ferroelectric domain formation. Journal of the American Ceramic Society 81, 492–500 (1998)

    Article  Google Scholar 

  45. Li, Y. L., Hu, S. Y., Liu, Z. K., et al.: Phase-field model of domain structures in ferroelectric thin films. Applied Physics Letters 78, 3878 (2001)

    Article  Google Scholar 

  46. Li, Y. L., Hu, S. Y., Liu, Z. K., et al.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Materialia 50, 395–411 (2002)

    Article  Google Scholar 

  47. Wang, J., Kamlah, M., Zhang, T. Y.: Phase field simulations of low dimensional ferroelectrics. Acta Mechanica 214, 49–59 (2010)

    Article  MATH  Google Scholar 

  48. Chen, L. Q., Shen, J.: Applications of semi-implicit Fourierspectral method to phase field equations. Computer Physics Communications 108, 147–158 (1998)

    Article  MATH  Google Scholar 

  49. Su, Y., Landis, C. M.: Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. Journal of the Mechanics and Physics of Solids 55, 280–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schrade, D., Mueller, R., Xu, B. X., et al.: Domain evolution in ferroelectric materials: A continuum phase field model and finite element implementation. Computer Methods in Applied Mechanics and Engineering 196, 4365–4374 (2007)

    Article  MATH  Google Scholar 

  51. Wang, J., Kamlah, M.: Three dimensional finite element modeling of polarization switching in a ferroelectric single domain with an impermeable notch. Smart Materials and Structures 18, 104008 (2009).

    Article  Google Scholar 

  52. Shu, Y. C., Lin, M. P., Wu, K. C.: Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mechanics of Materials 36, 975–997 (2004)

    Article  Google Scholar 

  53. Dayal, K., Bhattacharya, K.: A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Materialia 55, 1907–1917 (2007)

    Article  Google Scholar 

  54. Dayal, K., Yang, L.: Effect of lattice orientation, surface modulation, and applied fields on free-surface domain microstructure in ferroelectrics. Acta Materialia 59, 6594–6603 (2011)

    Article  Google Scholar 

  55. Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Materialia 53, 185–198 (2005)

    Article  Google Scholar 

  56. Zhang, W., Bhattacharya, K.: A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta Materialia 53, 199–209 (2005)

    Article  Google Scholar 

  57. Xiao, Y., Bhattacharya, K.: Interaction of oxygen vacancies with domain walls and its impact on fatigue in ferroelectric thin films. In Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics Proc. SPIE, Vol. 5387 (2004)

  58. Zhang, Y. H., Li, J. Y., Fang, D. N.: Oxygen-vacancy-induced memory effect and large recoverable strain in a barium titanate single crystal. Physical Review B 82, 064103 (2010)

    Article  Google Scholar 

  59. Hu, S. Y., Li, Y. L., Chen, L. Q.: Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film: a phase-field model. Journal of Applied Physics 94, 2542 (2003)

    Article  Google Scholar 

  60. Wang, J., Zhang, T. Y.: Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Materialia 55, 2465–2477 (2007)

    Article  Google Scholar 

  61. Wang, J., Zhang, T. I.: Phase field simulations of a permeable crack parallel to the original polarization direction in a ferroelectric mono-domain. Engineering Fracture Mechanics 75, 4886–4897 (2008)

    Article  Google Scholar 

  62. Wang, J., Kamlah, M.: Effect of electrical boundary conditions on the polarization distribution around a crack embedded in a ferroelectric single domain. Engineering Fracture Mechanics 77, 3658–3669 (2010)

    Article  Google Scholar 

  63. Abdollahi, A., Arias, I.: Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Materialia 59, 4733–4746 (2011)

    Article  Google Scholar 

  64. Yang, L., Dayal, K.: Microstructure and stray electric fields at surface cracks in ferroelectrics. International Journal of Fracture 174, 17–27 (2012)

    Article  Google Scholar 

  65. Zhang, J. X., Chen, L. Q.: Phase-field model for ferromagnetic shape-memory alloys. Philosophical Magazine Letters 85, 533–541 (2005)

    Article  Google Scholar 

  66. Wu, P. P., Ma, X. Q., Zhang, J. X., et al.: Phase-field simulations of stress-strain behavior in ferromagnetic shape memory alloy Ni2MnGa. Journal of Applied Physics 104, 073906 (2008)

    Article  Google Scholar 

  67. Zhang, J. X., Chen, L. Q.: Phase-field simulations of magnetic field-induced strain in Ni2MnGa ferromagnetic shape memory alloy. Philosophical Magazine Letters 91, 2102–2116 (2011)

    Article  Google Scholar 

  68. Brown, W. F.: Micromagnetics. Wesley, New York (1963)

    Google Scholar 

  69. Gilbert, T. L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics 40, 3443–3449 (2004)

    Article  Google Scholar 

  70. Landau, L. D., Lifshitz, E. M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  71. Wen, Y. H., Wang, Y., Chen, L. Q.: Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation. Acta Materialia 47, 4375–4386 (1999)

    Article  Google Scholar 

  72. Chen, L. Q., Khachaturyan, A. G.: Kinetics of virtual phase formation during precipitation of ordered intermetallics. Physical Review B 46, 5899–5905 (1992)

    Article  Google Scholar 

  73. Chen, L. Q., Khachaturyan, A. G.: Dynamics of simultaneous ordering and phase-separation and effect of long-range coulomb interactions. Physical Review Letters 70, 1477–1480 (1993)

    Article  Google Scholar 

  74. Bhattacharya, K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum Mechanics and Thermodynamics 5: 205–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  75. Shu, Y. C., Bhattacharya, K.: Domain patterns and macroscopic behaviour of ferroelectric materials. Philosophical Magazine Part B 81, 2021–2054 (2001)

    Google Scholar 

  76. Shu. Y. C., Yen, J. H., Hsieh, J.: Effect of depolarization and coercivity on actuation strains due to domain switching in barium titanate. Applied Physics Letters 90, 172902 (2007)

    Article  Google Scholar 

  77. Yang, L., Dayal, K.: Formulation of phase-field energies for microstructure in complex crystal structures. Applied Physics Letters 96, 081916 (2010).

    Article  Google Scholar 

  78. Shin, M. C., Chung, S. J., Lee, S. G., et al.: Growth and observation of domain structure of lead magnesium niobateLead titanate single crystals. Journal of Crystal Growth 263, 412–420 (2004)

    Article  Google Scholar 

  79. Bhattacharya, K.: Self-accommodation in martensite. Archive for Rational Mechanics and Analysis 120, 201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  80. Bhattacharya, K., Conti, S., Zanzotto, G., et al.: Crystal symmetry and the reversibility of martensitic transformations. Nature 428, 55–59 (2004)

    Article  Google Scholar 

  81. James, R. D., Zhang, Z.: In Magnetism and Structure in Functional Materials. Springer Series in Materials Science, Vol. 79, Springer, New York (2005)

    Google Scholar 

  82. Cui, J., Chu, Y. S., Famodu, O. O., et al.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Materials 5, 286–290 (2006)

    Article  Google Scholar 

  83. Zhang, Z., James, R. D., Müller, S.: Energy barriers and hysteresis in martensitic phase transformations. Acta Materialia 57, 4332–4352 (2009)

    Article  Google Scholar 

  84. Ullakko, K., Huang, J. K., Kantner, C., et al.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters 69, 1966–1968 (1996)

    Article  Google Scholar 

  85. James, D., Wuttig, M.: Magnetostriction of Martensite, Philosophical Magazine A 77, 1273–1299 (1998)

    Article  Google Scholar 

  86. Tickle, R., James, R. D.: Magnetic and magnetomechanical properties of Ni2MnGa. Journal of Magnetism and Magnetic Materials 195, 627–638 (1999)

    Article  Google Scholar 

  87. Murray, S. J., Marioni, M., Allen, S. M., et al.: 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic NiMnGa. Applied Physics Letters 77, 886–888 (2000)

    Article  Google Scholar 

  88. Heczko, O., Sozinov, A., Ullakko, K.: Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Transactions on Magnetics 36, 3266–3268 (2000)

    Article  Google Scholar 

  89. Oikawa, K., Ota, T., Gejima, F., et al.: Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems. Materials Transactions 42, 2472–2475 (2001)

    Article  Google Scholar 

  90. Sozinov, A., Likhachev, A. A., Lanska, N., et al.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Applied Physics Letters 80, 1746–1748 (2002)

    Article  Google Scholar 

  91. Heczko, O.: Magnetic shape memory effect and magnetization reversal. Journal of Magnetism and Magnetic Materials 290–291(2), 787–794 (2005)

    Article  Google Scholar 

  92. Ma, Y. F., Li, J. Y.: Magnetization rotation and rearrangement of martensite variants in ferromagnetic shape memory alloys. Applied Physics Letters 90, 172504 (2007)

    Article  Google Scholar 

  93. Li, J. Y., Ma, Y. F.: Magnetoelastic modeling of magnetization rotation and variant rearrangement in ferromagnetic shape memory alloys. Mechanics of Materials 40, 1022–1036 (2008)

    Article  Google Scholar 

  94. Aharoni, A.: Introduction to the Theory of Ferromagnetism (The International Series of Monographs on Physics). Oxford Science Publications (2000)

  95. Chung, T. K., Keller, S., Carman, G. P.: Electric-field-induced reversible magnetic single-domain evolution in a magnetoelectric thin film. Applied Physics Letters 94, 132501 (2009)

    Article  Google Scholar 

  96. Chung, T. K., Wong, K., Keller, S., et al.: Electrical control of magnetic remanent states in a magnetoelectric layered nanostructure. Journal of Applied Physics 106, 103914 (2009)

    Article  Google Scholar 

  97. Eerenstein, W., Morrison, F. D., Dho, J., et al.: Comment on “epitaxial BiFeO3 multiferroic thin film heterostructure”. Science 307, 1203 (2005)

    Article  Google Scholar 

  98. Hur, N., Park, S., Sharma, P. A., et al.: Electric polarization reversal and memory in a multiferroic material inducedby magnetic fields. Nature 429, 392–395 (2004)

    Article  Google Scholar 

  99. Nan, C. W., Liu, G., Liu, Y., et al.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Physical Review Letters 94, 197203 (2005)

    Article  Google Scholar 

  100. Spaldin, N. A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  101. Wang, J., Neaton, J. B., Zheng, H., et al.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Yu Li.

Additional information

The project was supported by the NSF (DMR-1006194 and CMMI-1100339), NSFC (10972189 and 11102175), and NSC(100-2628-E-002-034-MY3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JY., Lei, CH., Li, LJ. et al. Unconventional phase field simulations of transforming materials with evolving microstructures. Acta Mech Sin 28, 915–927 (2012). https://doi.org/10.1007/s10409-012-0129-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0129-0

Keywords

Navigation