Skip to main content
Log in

Experimental investigation on flow modes of electrospinning

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the conejet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic constitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the capillary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotating bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Z. M., Zhang, Y. Z., Kotakic, M., et al.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 63, 2223–2253 (2003)

    Article  Google Scholar 

  2. Reneker, D. H., Yarin, A. L., Zussman, E., et al.: Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007)

    Article  Google Scholar 

  3. Reneker, D. H., Yarin, A. L.: Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425 (2008)

    Article  Google Scholar 

  4. Graham, K., Ouyang, M., Raether, T., et al.: Polymeric nanofibers in air filtration applications. In: Proc. the Fifteenth Annual Technical Conference Expo of the American Filtration Separations Society, Galveston, Texas, 2002, April 9–12.

  5. Zhang, H. B., Jayasinghe, S. N., Edirisinghe, M. J.: Electrically forced microthreading of highly viscous dielectric liquids. Journal of Electrostatics 64, 355–360 (2006)

    Article  Google Scholar 

  6. Theron, A., Zussman, E., Yarin, A. L.: Electrostatic fieldassisted alignment of electrospun nanofibres. Nanotechnology 12, 384–390 (2001)

    Article  Google Scholar 

  7. Kong, C. S., Lee, T. H., Lee, S. H., et al.: Nano-web formation by the electrospinning at various electricfields. J Mater Sci. 42, 8106–8112 (2007)

    Article  Google Scholar 

  8. Yarin, A. L., Kataphinan, W., Reneker, D. H.: Branching in electrospinning of nanofibers. Journal of Applied Physics 98, 064501 (2005)

    Article  Google Scholar 

  9. Chronakis, I. S., Grapenson, S., Jakob, A.: Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer 47, 1597–1603 (2006)

    Article  Google Scholar 

  10. Fong, H., Chun, I., Reneker, D. H.: Beaded nanofibers formed during electro-spinning. Polymer 40, 4585–4592 (1999)

    Article  Google Scholar 

  11. Zuo, W. W., Zhu, M. F., Yang, W., et al.: Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Poly. Eng. Sci. 45, 704–709 (2005)

    Article  Google Scholar 

  12. Taylor, G.: Electrically driven jets. proceedings of the royal society of london. Series A, Mathematical and Physical Sciences 313, 453–475 (1969)

    Article  Google Scholar 

  13. Baumgarten, P. K.: Electrostatic spinning of acrylic mi crofibers. Journal of Colloid and Interface Science 36, 71–79 (1971)

    Article  Google Scholar 

  14. Reneker, D. H., Yarin, A. L., Fong, H., et al.: Bending instability of electrically charged jets of polymer solutions in electrospinning. Journal of Applied Physics 87, 4531–4547 (2000)

    Article  Google Scholar 

  15. Yarin, A. L., Koombhongse, S., Reneker, D. H.: Bending instability in electrospinning of nanofibers. Journal of Applied Physics 89, 3018–3026 (2001)

    Article  Google Scholar 

  16. Yarin, A. L., Koombhongse, S., Reneker, D. H.: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics 90, 4836–4846 (2001)

    Article  Google Scholar 

  17. Riboux, G., Marin, A. G., Loscertales, I. G., et al.: Whipping instability characterization of an electrified visco-capillary jet. J. Fluid Mech. 671, 226–253 (2011)

    Article  MATH  Google Scholar 

  18. Li, F., Ganan-Calvo, A. M., Lopez-Herrera, J.: Absoluteconvective instability transition of low permittivity, low conductivity charged viscous liquid jets under axial electric fields. Phys. Fluids 23, 094108 (2011)

    Article  Google Scholar 

  19. Bird, R., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1: Fluid Mechanics. New York: John Wiley and Sons, 1987.

    Google Scholar 

  20. Friedrich, C.: Relaxation and retardation functions of the maxwell model with fractional derivatives. Rheologica Acta 30, 151–158 (1991)

    Article  Google Scholar 

  21. Schiessel, H., Metzler, R., Blumen, A., et al.: Generalized viscoelastic models: Their fractional equations with solutions. Journal of Physics a-Mathematical and General 28, 6567–6584 (1995)

    Article  MATH  Google Scholar 

  22. Khan, M., Hayat, T., Asghar, S.: Exact solution for mhd flow of a generalized oldroyd-b fluid with modified darcy’s law. International Journal of Engineering Science 44, 333–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khan, M., Ali, S. H., Qi, H.: On accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. Nonlinear Analysis-Real World Applications 10, 2286–2296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shin, Y.M., Hohman, M.M., Brenner, M. P., et al.: Experimental characterization of electrospinning: the electrically force jet and instabilities. Polymer 42, 9955–9967 (2001)

    Article  Google Scholar 

  25. Hohman, M. M., Shin, Y. M., Rutledge, G., et al.: Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201–2220 (2001)

    Article  MathSciNet  Google Scholar 

  26. Carroll, C. P., Joo, Y. L.: Electrospinning of viscoelastic Boger fluids: Modeling and experiments. Phys. Fluids 18, 053102 (2006)

    Article  Google Scholar 

  27. Huebner, A. L.: Disintegration of charged liquid jets. J. Fluid Mech. 38, 679–688 (1969)

    Article  Google Scholar 

  28. Carroll, C. P., Joo, Y. L.: Axisymmetric instabilities of electrically driven viscoelastic jets. J. Non-Newt. Fluid Mech. 153, 130–148 (2008)

    Article  Google Scholar 

  29. Carroll, C. P., Joo, Y. L.: Axisymmetric instabilities in electrospinning of highly conducting, viscoelastic polymer solutions. Phys. Fluids 21, 103101 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Si.

Additional information

The project was supported by the National Natural Science Foundation of China Project (11002139) and the China Postdoctoral Science Foundation (20100470854).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, T., Li, GB., Chen, XX. et al. Experimental investigation on flow modes of electrospinning. Acta Mech Sin 28, 644–652 (2012). https://doi.org/10.1007/s10409-012-0101-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0101-z

Keywords

Navigation