Skip to main content
Log in

A glance on the effects of temperature on axisymmetric dynamic behavior of multiwall carbon nanotubes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper the effects of temperature on the radial breathing modes (RBMs) and radial wave propagation in multiwall carbon nanotubes (MWCNTs) are investigated using a continuum model of multiple elastic isotropic shells. The van der Waals forces between tubes are simulated as a nonlinear function of interlayer spacing of MWCNTs. The governing equations are solved using a finite element method. A wide range of innermost radius-to-thickness ratio of MWCNTs is considered to enhance the investigation. The presented solution is verified by comparing the results with those reported in the literature. The effects of temperature on the van der Waals interaction coefficient between layers of MWCNTs are examined. It is found that the variation of the van der Waals interaction coefficient at high temperature is sensible. Subsequently, variations of RBM frequencies and radial wave propagation in MWCNTs with temperatures up to 1 600 K are illustrated. It is shown that the thick MWCNTs are more sensible to temperature than the thin ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pantano, A., Parks, M. D., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)

    Article  MATH  Google Scholar 

  2. Pantano, A., Boyce, M. C., Parks, D. M.: Mechanics of axial compression of single and multi-wall carbon nanotubes. J. Eng. Mater. Technol. 126, 279–284 (2004)

    Article  Google Scholar 

  3. Wang, Y., Ni, X. G., Wang, X. X., et al.: Effect of temperature on deformation of carbon nanotube under compression. Chin. Phys. 12, 1007–1010 (2003)

    Article  Google Scholar 

  4. Jeng, Y. R., Tsai, P. C., Fang, T. H.: Effects of temperature and vacancy defects on tensile deformation of single-walled carbon nanotubes. J. Phys. Chem. Solids 65, 1849–1856 (2004)

    Article  Google Scholar 

  5. Zhu, S. Q., Wang, X.: Effect of environmental temperatures on elastic properties of single-walled carbon nanotube. J. Therm. Stresses 30, 1195–1210 (2007)

    Article  Google Scholar 

  6. Chen, X., Wang, X., Sheng, G. G.: Effects of strain rates and temperatures on the mechanical properties of multi-walled carbon nanotubes. Phys. Scr. 75, 455–459 (2007)

    Article  Google Scholar 

  7. Zhang, Y. C., Chen, X., Wang, X.: Effects of temperature on mechanical properties of multi-walled carbon nanotubes. Compos. Sci. Technol. 68, 572–581 (2008)

    Article  Google Scholar 

  8. Liu, T. T., Wang, X.: Dynamic elastic modulus of single-walled carbon nanotubes in different thermal environments. Phys. Lett. A 365, 144–148 (2007)

    Article  Google Scholar 

  9. Hepplestone, S. P., Ciavarella, A. M., Janke, C., et al.: Size and temperature dependence of the specific heat capacity of carbon nanotubes. Surf. Sci. 600, 3633–3636 (2006)

    Article  Google Scholar 

  10. Hone, J., Llaguno, M. C., Biercuk, M. J., et al.: Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A 74, 339–343 (2002)

    Article  Google Scholar 

  11. Hone, J., Whitney, M., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103, 2498–2499 (1999)

    Article  Google Scholar 

  12. Zhang, G., Li, B.: Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 123, 1–4 (2005)

    Google Scholar 

  13. Mensah, N. G., Nkrumah, G., Mensah, S. Y., et al.: Temperature dependence of the thermal conductivity in chiral carbon nanotubes. Phys. Lett. A 329, 369–378 (2004)

    Article  Google Scholar 

  14. Li, C., Chou, T. W.: Axial and radial thermal expansions of single-walled carbon nanotubes. Physical Review B — Condensed Matter and Materials Physics 71, 1–6 (2005)

    Google Scholar 

  15. Singh, B. P., Verma, A.: Thermal expansion in single-walled carbon nanotubes at different temperatures. Int. J. Nanosci. 7, 305–313 (2008)

    Article  Google Scholar 

  16. Jiang, H., Liu, B., Huang, Y., et al.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265–270 (2004)

    Article  Google Scholar 

  17. Zhang, Y. Q., Liu, X., Zhao, J. H.: Influence of temperature change on column buckling of multiwalled carbon nanotubes. Phys. Lett. A 372, 1676–1681 (2008)

    Article  MATH  Google Scholar 

  18. Lee, H. L., Chang, W. J.: A closed-form solution for critical buckling temperature of a single-walled carbon nanotube. Physica E 41, 1492–1494 (2009)

    Article  Google Scholar 

  19. Zhang, C. L., Shen, H. S.: Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon 44, 2608–2616 (2006)

    Article  Google Scholar 

  20. Xiaohu, Y., Qiang, H.: Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field. Compos. Sci. Technol. 67, 125–134 (2007)

    Article  Google Scholar 

  21. Raravikar, N. R., Keblinski, P., Rao, A.M., et al.: Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys. Rev. B 66, 2354241–2354249 (2002)

    Article  Google Scholar 

  22. Ouyang, Y., Fang, Y.: Temperature dependence of the raman spectra of carbon nanotubes with 1064 nm excitation. Physica E 24, 222–226 (2004)

    Article  Google Scholar 

  23. Meletov, K. P., Krestinin, A. V., Arvanitidis, J., et al.: Temperature effects in the Raman spectra of bundled single-wall carbon nanotubes. Chem. Phys. Lett. 477, 336–339 (2009)

    Article  Google Scholar 

  24. Zhou, Z., Ci, L., Song, L., et al.: The intrinsic temperature effect of Raman spectra of double-walled carbon nanotubes. Chem. Phys. Lett. 396, 372–376 (2004)

    Article  Google Scholar 

  25. Murmu, T., Pradhan, S. C.: Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46, 854–859 (2009)

    Article  Google Scholar 

  26. Peng, Z., Yonggang, H., Geubelle, P., et al.: On the continuum modeling of carbon nanotubes. Acta Mech. Sin. 18, 528–536 (2002)

    Article  Google Scholar 

  27. Talebian, S. T., Tahani, M., Hosseini, S. M., et al.: Displacement time history analysis and radial wave propagation velocity in pressurized multiwall carbon nanotubes. Comput. Mater. Sci. 49, 283–292 (2010)

    Article  Google Scholar 

  28. He, X. Q., Kitipornchai, S., Wang, C. M., et al.: Modeling of van der Waals force for infinitesimal deformation of multiwalled carbon nanotubes treated as cylindrical shells. Int. J. Solids Struct. 42, 6032–6047 (2005)

    Article  MATH  Google Scholar 

  29. Reddy, J. N.: Energy Principles and Variational Methods in Applied Mechanics, 2th edn. John Wiley & Sons, New Jersey (2002)

    Google Scholar 

  30. Peng, J., Wu, J., Hwang, K. C., et al.: Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids 56, 2213–2224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, D. B., Dumitrica, T.: Elasticity of ideal single-walled carbon nanotubes via symmetry-adapted tight-binding objective modeling. Appl. Phys. Lett. 93, (2008)

  32. Yakobson, B. I., Brabec, C. J., Bemholc, J.: Nanomechanics of carbon tubes: instability beyond linear response. Phys. Rev. Lett. 76, 25l1–2514 (1996)

    Article  Google Scholar 

  33. Liew, K. M., Wang, Q.: Analysis of wave propagation in carbon nanotubes via elastic shell theories. Int. J. Eng Sci 45, 227–241 (2007)

    Article  Google Scholar 

  34. Talebian, S. T., Tahani, M., Abolbashari, M. H., et al.: Effects of dimensional parameters and various boundary conditions on axisymmetric vibrations of multi-walled carbon nanotubes using a continuum model. Arch. Appl. Mech. 81, 1129–1140 (2011)

    Article  Google Scholar 

  35. Uchida, T., Tazawa, M., Sakai, H., et al.: Radial breathing modes of single-walled carbon nanotubes in resonance Raman spectra at high temperature and their chiral index assignment. Appl. Surf. Sci. 254, 7591–7595 (2008)

    Article  Google Scholar 

  36. Xiao, J. R., Lopatnikov, S. L., Gama, B. A., et al.: Nanomechanics on the deformation of single- and multi-walled carbon nanotubes under radial pressure. Mater. Sci. Eng. A 416, 192–204 (2006)

    Article  Google Scholar 

  37. Talebian, S. T., Tahani, M.: A study on dynamic behaviour of functionally graded thick hollow circular cylinders. Proc. IMechE, Part C: J. Mech Eng Sci. 226, 498–513 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebian, S.T., Tahani, M., Abolbashari, M.H. et al. A glance on the effects of temperature on axisymmetric dynamic behavior of multiwall carbon nanotubes. Acta Mech Sin 28, 720–728 (2012). https://doi.org/10.1007/s10409-012-0073-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0073-z

Keywords

Navigation